Logan C Walker

University of Otago, Taieri, Otago, New Zealand

Are you Logan C Walker?

Claim your profile

Publications (40)186.48 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Findings of polymerase chain reaction (PCR) studies of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) and breast cancer vary, making it difficult to determine whether either, both, or neither virus is causally associated with breast cancer. We investigated CMV and EBV in paired samples of breast cancer and normal breast tissue from 70 women using quantitative PCR. A serum sample from each woman was tested for CMV and EBV IgG. To place our results in context, we reviewed the existing literature and performed a meta-analysis of our results together with previous PCR studies of EBV, CMV, and breast cancer. Of the serology samples, 67 of 70 (96%) were EBV IgG positive and 49 of 70 (70%) were CMV IgG positive. QPCR detected EBV in 24 (34%) of the tumour and 9 (13%) of the paired normal specimens and CMV in 0 (0%) of the tumour and 2 (3%) of the paired normal specimens. Our findings, together with earlier results summarised in the meta-analysis, suggest several possibilities: variable findings may be due to limitations of molecular analyses; 'hit and run' oncogenesis may lead to inconsistent results; one or both viruses has a role at a later stage in breast cancer development; infection with multiple viruses increases breast cancer risk; or neither virus has a role. Future studies should focus on ways to investigate these possibilities, and should include comparisons of breast cancer tissue samples with appropriate normal tissue samples.
    PLoS ONE 02/2015; 10(2):e0118989. DOI:10.1371/journal.pone.0118989 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AimsThe proliferation marker Ki67 has been extensively investigated as a prognostic factor in breast cancer, but has not gained widespread clinical acceptance. Phosphohistone H3 is a new immunohistochemical marker for quantifying mitoses, however there is limited information on its prognostic value in breast cancer. In this study, we performed a head-to-head comparison of Ki67 and phosphohistone H3 to establish the marker of greatest prognostic value.Methods and resultsTissue microarrays from 108 breast cancer patients were immunohistochemically stained for Ki67 and phosphohistone H3. Our results show that phosphohistone H3 had a greater prognostic value than Ki67 in a multivariable model that adjusted for traditional prognostic variables in breast cancer. Phosphohistone H3 staining was a strong predictor of survival at 5-years after diagnosis (HR=4.35, P<10-5) compared to Ki67 (HR=2.44, P=0.004), and better separated the risk of death in patients over 45 years of age. Importantly, phosphohistone H3 consistently showed strong unequivocal staining compared to the variable staining intensities associated with Ki67.Conclusion Our study suggests that phosphohistone H3 staining is a stronger and more robust prognostic indicator than Ki67 staining in breast cancer patients and has the potential for use in routine diagnostic laboratories.This article is protected by copyright. All rights reserved.
    Histopathology 02/2015; DOI:10.1111/his.12678 · 3.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endometrial cancer is the most common invasive gynaecological cancer in women, and relatively little is known about inherited risk factors for this disease. This is the first genome-wide study to explore the role of common and rare germline copy number variants (CNVs) in predisposition to endometrial cancer. CNVs were called from germline DNA of 1,209 endometrioid endometrial cancer cases and 528 cancer-unaffected female controls. Overall CNV load of deletions or DNA gains did not differ significantly between cases and controls (P > 0.05), but cases presented with an excess of rare germline deletions overlapping likely functional genomic regions including genes (P = 8 × 10(-10)), CpG islands (P = 1 × 10(-7)) and sno/miRNAs regions (P = 3 × 10(-9)). On average, at least one additional gene and two additional CpG islands were disrupted by rare deletions in cases compared to controls. The most pronounced difference was that over 30 sno/miRNAs were disrupted by rare deletions in cases for every single disruption event in controls. A total of 13 DNA repair genes were disrupted by rare deletions in 19/1,209 cases (1.6 %) compared to one gene in 1/528 controls (0.2 %; P = 0.007), and this increased DNA repair gene loss in cases persisted after excluding five individuals carrying CNVs disrupting mismatch repair genes MLH1, MSH2 and MSH6 (P = 0.03). There were 34 miRNA regions deleted in at least one case but not in controls, the most frequent of which encompassed hsa-mir-661 and hsa-mir-203. Our study implicates rare germline deletions of functional and regulatory regions as possible mechanisms conferring endometrial cancer risk, and has identified specific regulatory elements as candidates for further investigation.
    Human Genetics 11/2014; 134(3). DOI:10.1007/s00439-014-1507-4 · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and non-genetic modifying factors. In this study we evaluated the putative role of variants in many candidate modifier genes. Methods: Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n=3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. Results: The observed p-values of association ranged between 0.005-1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. Conclusion: There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Impact: Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies.
    Cancer Epidemiology Biomarkers & Prevention 10/2014; 24:308-16. DOI:10.1158/1055-9965.EPI-14-0532 · 4.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss-of-function germline mutations in BRCA1 (MIM #113705) confer markedly increased risk of breast and ovarian cancer. The full-length transcript codifies for a protein involved in DNA repair pathways and cell-cycle checkpoints. Several BRCA1 splicing isoforms have been described in public domain databases, but the physiological role (if any) of BRCA1 alternative splicing remains to be established. An accurate description of 'naturally occurring' alternative splicing at this locus is a prerequisite to understand its biological significance. However, a systematic analysis of alternative splicing at the BRCA1 locus is yet to be conducted. Here, the Evidence-Based Network for the Interpretation of Germ-Line Mutant Alleles consortium combines RT-PCR, exon scanning, cloning, sequencing and relative semi-quantification to describe naturally occurring BRCA1 alternative splicing with unprecedented resolution. The study has been conducted in blood-related RNA sources, commonly used for clinical splicing assays, as well as in one healthy breast tissue. We have characterized a total of 63 BRCA1 alternative splicing events, including 35 novel findings. A minimum of 10 splicing events (Δ1Aq, Δ5, Δ5q, Δ8p, Δ9, Δ(9,10), Δ9_11, Δ11q, Δ13p and Δ14p) represent a substantial fraction of the full-length expression level (ranging from 5 to 100%). Remarkably, our data indicate that BRCA1 alternative splicing is similar in blood and breast, a finding supporting the clinical relevance of blood-based in vitro splicing assays. Overall, our data suggest an alternative splicing model in which most non-mutually exclusive alternative splicing events are randomly combined into individual mRNA molecules to produce hundreds of different BRCA1 isoforms
    Human Molecular Genetics 06/2014; DOI:10.1093/hmg/ddu075 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: on behalf of the ENIGMA consortium BACKGROUND: Accurate evaluation of unclassified se-quence variants in cancer predisposition genes is essen-tial for clinical management and depends on a multi-factorial analysis of clinical, genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. The integrity of assay data in turn re-lies on appropriate assay design, interpretation, and reporting. METHODS: We conducted a multicenter investigation to compare mRNA splicing assay protocols used by mem-bers of the ENIGMA (Evidence-Based Network for the Interpretation of Germline Mutant Alleles) consor-tium. We compared similarities and differences in re-sults derived from analysis of a panel of breast cancer 1,
    Clinical Chemistry 11/2013; DOI:10.1373/clinchem.2013.210658 · 7.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Splicing assays are commonly undertaken in the clinical setting to assess the clinical relevance of sequence variants in disease predisposition genes. A 5-tier classification system incorporating both bioinformatic and splicing assay information was previously proposed as a method to provide consistent clinical classification of such variants. Members of the ENIGMA Consortium Splicing Working Group undertook a study to assess the applicability of the scheme to published assay results, and the consistency of classifications across multiple reviewers. Splicing assay data was identified for 235 BRCA1 and 176 BRCA2 unique variants, from 77 publications. At least six independent reviewers from research and/or clinical settings comprehensively examined splicing assay methods and data reported for 22 variant assays of 21 variants in four publications, and classified the variants using the 5-tier classification scheme. Inconsistencies in variant classification occurred between reviewers for 17 of the variant assays. These could be attributed to a combination of ambiguity in presentation of the classification criteria, differences in interpretation of the data provided, non-standardised reporting of results, and the lack of quantitative data for the aberrant transcripts. We propose suggestions for minimum reporting guidelines for splicing assays, and improvements to the 5-tier splicing classification system to allow future evaluation of its performance as a clinical tool. This article is protected by copyright. All rights reserved.
    Human Mutation 10/2013; 34(10):n/a-n/a. DOI:10.1002/humu.22388 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported molecular karyotype analysis of invasive breast tumour core needle biopsies by comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) (Walker et al, Genes Chromosomes Cancer, 2008 May;47(5):405-17). That study identified frequently recurring gains and losses involving chromosome bands 8q22 and 8p21, respectively. Moreover, these data highlighted an association between 8q22 gain and typically aggressive grade 3 tumors. Here we validate and extend our previous investigations through FISH analysis of tumor touch imprints prepared from excised breast tumor specimens. Compared to post-surgical tumor excisions, core needle biopsies are known to be histologically less precise when predicting tumor grade. Therefore investigating these chromosomal aberrations in tumor samples that offer more reliable pathological assessment is likely to give a better overall indication of association. A series of 60 breast tumors were screened for genomic copy number changes at 8q22 and 8p21 by dual-color FISH. Results confirm previous findings that 8p loss (39%) and 8q gain (74%) occur frequently in invasive breast cancer. Both absolute quantification of 8q22 gain across the sample cohort, and a separate relative assessment by 8q22:8p21 copy number ratio, showed that the incidence of 8q22 gain significantly increased with grade (p = 0.004, absolute and p = 0.02, relative). In contrast, no association was found between 8p21 loss and tumor grade. These findings support the notion that 8q22 is a region of interest for invasive breast cancer pathogenesis, potentially harboring one or more genes that, when amplified, precipitate the molecular events that define high tumor grade.
    PLoS ONE 07/2013; 8(7):e70790. DOI:10.1371/journal.pone.0070790 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Reliable estimates of cancer risk are critical for guiding management of BRCA1 and BRCA2 mutation carriers. The aims of this study were to derive penetrance estimates for breast cancer, ovarian cancer, and contralateral breast cancer in a prospective series of mutation carriers and to assess how these risks are modified by common breast cancer susceptibility alleles. METHODS: Prospective cancer risks were estimated using a cohort of 978 BRCA1 and 909 BRCA2 carriers from the United Kingdom. Nine hundred eighty-eight women had no breast or ovarian cancer diagnosis at baseline, 1509 women were unaffected by ovarian cancer, and 651 had been diagnosed with unilateral breast cancer. Cumulative risks were obtained using Kaplan-Meier estimates. Associations between cancer risk and covariables of interest were evaluated using Cox regression. All statistical tests were two-sided. RESULTS: The average cumulative risks by age 70 years for BRCA1 carriers were estimated to be 60% (95% confidence interval [CI] = 44% to 75%) for breast cancer, 59% (95% CI = 43% to 76%) for ovarian cancer, and 83% (95% CI = 69% to 94%) for contralateral breast cancer. For BRCA2 carriers, the corresponding risks were 55% (95% CI = 41% to 70%) for breast cancer, 16.5% (95% CI = 7.5% to 34%) for ovarian cancer, and 62% (95% CI = 44% to 79.5%) for contralateral breast cancer. BRCA2 carriers in the highest tertile of risk, defined by the joint genotype distribution of seven single nucleotide polymorphisms associated with breast cancer risk, were at statistically significantly higher risk of developing breast cancer than those in the lowest tertile (hazard ratio = 4.1, 95% CI = 1.2 to 14.5; P = .02). CONCLUSIONS: Prospective risk estimates confirm that BRCA1 and BRCA2 carriers are at high risk of developing breast, ovarian, and contralateral breast cancer. Our results confirm findings from retrospective studies that common breast cancer susceptibility alleles in combination are predictive of breast cancer risk for BRCA2 carriers.
    JNCI Journal of the National Cancer Institute 06/2013; 105(11):812. DOI:10.1093/jnci/djt095 · 15.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Accurate evaluation of unclassified sequence variants in cancer predisposition genes is essential for clinical management and depends on a multifactorial analysis of clinical, genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. The integrity of assay data in turn relies on appropriate assay design, interpretation, and reporting.METHODS: We conducted a multicenter investigation to compare mRNA splicing assay protocols used by members of the ENIGMA (Evidence-Based Network for the Interpretation of Germline Mutant Alleles) consortium. We compared similarities and differences in results derived from analysis of a panel of breast cancer 1, early onset (BRCA1) and breast cancer 2, early onset (BRCA2) gene variants known to alter splicing (BRCA1: c.135-1G>T, c.591C>T, c.594-2A>C, c.671-2A>G, and c.5467+5G>C and BRCA2: c.426-12_8delGTTTT, c.7988A>T, c.8632+1G>A, and c.9501+3A>T). Differences in protocols were then assessed to determine which elements were critical in reliable assay design.RESULTS: PCR primer design strategies, PCR conditions, and product detection methods, combined with a prior knowledge of expected alternative transcripts, were the key factors for accurate splicing assay results. For example, because of the position of primers and PCR extension times, several isoforms associated with BRCA1, c.594-2A>C and c.671-2A>G, were not detected by many sites. Variation was most evident for the detection of low-abundance transcripts (e.g., BRCA2 c.8632+1G>A Delta19,20 and BRCA1 c.135-1G>T Delta5q and Delta3). Detection of low-abundance transcripts was sometimes addressed by using more analytically sensitive detection methods (e.g., BRCA2 c.426-12_8delGTTTT ins18bp).CONCLUSIONS: We provide recommendations for best practice and raise key issues to consider when designing mRNA assays for evaluation of unclassified sequence variants.
  • European Journal of Cancer 07/2012; 48:S275. DOI:10.1016/S0959-8049(12)71741-0 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A characteristic of sporadic and familial breast tumours is genomic instability, resulting from either inherited mutations in genes that control genome integrity or mutations that are acquired in somatic cells during development. It is well established that abnormal chromosome number and structural changes to chromosomes play an important role in the cause and progression of breast cancer. Familial BRCA1 breast tumours are characterised by basal-like phenotype and high-histological grade which are typically associated with increased genomic instability. Consistent with previous studies, the genomes with the greatest number of base pairs covered by copy number change were typically found in basal-like and/or high-histological grade breast tumours within our cohort. Moreover, we show that luminal A tumours that are high grade had significantly less copy number variant (CNV) coverage than the more clinically aggressive high-grade luminal B tumours, suggesting that chromosomal instability rather than cellular differentiation contributes to the aggressive nature of luminal B tumours. It has previously been proposed that germline CNVs may contribute to somatically acquired chromosome changes in the tumour, but this is the first study to address this idea in breast cancer. By comparing germline CNVs and tumour-specific CNVs in matched breast tumour and normal tissue using data from the Illumina Human CNV370 duo beadarray, we provide evidence that germline CNVs do not tend to act as a foundation on which larger chromosome copy number aberrations develop in tumour cells. Further studies are required with increased sequence resolution that will detect smaller CNVs and define CNV breakpoints to comprehensively assess the relationship between inherited genomic variation and genome evolution in breast cancer.
    Breast Cancer Research and Treatment 03/2012; 134(3):1005-11. DOI:10.1007/s10549-012-2024-6 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical management of breast cancer families is complicated by identification of BRCA1 and BRCA2 sequence alterations of unknown significance. Molecular assays evaluating the effect of intronic variants on native splicing can help determine their clinical relevance. Twenty-six intronic BRCA1/2 variants ranging from the consensus dinucleotides in the splice acceptor or donor to 53 nucleotides into the intron were identified in multiple-case families. The effect of the variants on splicing was assessed using HSF matrices, MaxEntScan and NNsplice, followed by analysis of mRNA from lymphoblastoid cell lines. A total of 12 variants were associated with splicing aberrations predicted to result in production of truncated proteins, including a variant located 12 nucleotides into the intron. The posterior probability of pathogenicity was estimated using a multifactorial likelihood approach, and provided a pathogenic or likely pathogenic classification for seven of the 12 spliceogenic variants. The apparent disparity between experimental evidence and the multifactorial predictions is likely due to several factors, including a paucity of likelihood information and a nonspecific prior probability applied for intronic variants outside the consensus dinucleotides. Development of prior probabilities of pathogenicity incorporating bioinformatic prediction of splicing aberrations should improve identification of functionally relevant variants and enhance multifactorial likelihood analysis of intronic variants.
    Human Mutation 06/2011; 32(6):678-87. DOI:10.1002/humu.21495 · 5.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endometrial cancer is the most common malignancy of the female genital tract in developed countries. To identify genetic variants associated with endometrial cancer risk, we performed a genome-wide association study involving 1,265 individuals with endometrial cancer (cases) from Australia and the UK and 5,190 controls from the Wellcome Trust Case Control Consortium. We compared genotype frequencies in cases and controls for 519,655 SNPs. Forty seven SNPs that showed evidence of association with endometrial cancer in stage 1 were genotyped in 3,957 additional cases and 6,886 controls. We identified an endometrial cancer susceptibility locus close to HNF1B at 17q12 (rs4430796, P = 7.1 × 10(-10)) that is also associated with risk of prostate cancer and is inversely associated with risk of type 2 diabetes.
    Nature Genetics 05/2011; 43(5):451-4. DOI:10.1038/ng.812 · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-nucleotide polymorphisms (SNPs) in genes involved in DNA repair are good candidates to be tested as phenotypic modifiers for carriers of mutations in the high-risk susceptibility genes BRCA1 and BRCA2. The base excision repair (BER) pathway could be particularly interesting given the relation of synthetic lethality that exists between one of the components of the pathway, PARP1, and both BRCA1 and BRCA2. In this study, we have evaluated the XRCC1 gene that participates in the BER pathway, as phenotypic modifier of BRCA1 and BRCA2. Three common SNPs in the gene, c.-77C>T (rs3213245) p.Arg280His (rs25489) and p.Gln399Arg (rs25487) were analysed in a series of 701 BRCA1 and 576 BRCA2 mutation carriers. An association was observed between p.Arg280His-rs25489 and breast cancer risk for BRCA2 mutation carriers, with rare homozygotes at increased risk relative to common homozygotes (hazard ratio: 22.3, 95% confidence interval: 14.3-34, P<0.001). This association was further tested in a second series of 4480 BRCA1 and 3016 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2. CONCLUSIONS AND INTERPRETATION: No evidence of association was found when the larger series was analysed which lead us to conclude that none of the three SNPs are significant modifiers of breast cancer risk for mutation carriers.
    British Journal of Cancer 03/2011; 104(8):1356-61. DOI:10.1038/bjc.2011.91 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the role of targeted prostate cancer screening in men with BRCA1 or BRCA2 mutations, an international study, IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in BRCA1/2 mutation carriers and controls), was established. This is the first multicentre screening study targeted at men with a known genetic predisposition to prostate cancer. A preliminary analysis of the data is reported. Men aged 40-69 years from families with BRCA1 or BRCA2 mutations were offered annual prostate specific antigen (PSA) testing, and those with PSA > 3 ng/mL, were offered a prostate biopsy. Controls were men age-matched (± 5 years) who were negative for the familial mutation. In total, 300 men were recruited (205 mutation carriers; 89 BRCA1, 116 BRCA2 and 95 controls) over 33 months. At the baseline screen (year 1), 7.0% (21/300) underwent a prostate biopsy. Prostate cancer was diagnosed in ten individuals, a prevalence of 3.3%. The positive predictive value of PSA screening in this cohort was 47·6% (10/21). One prostate cancer was diagnosed at year 2. Of the 11 prostate cancers diagnosed, nine were in mutation carriers, two in controls, and eight were clinically significant. The present study shows that the positive predictive value of PSA screening in BRCA mutation carriers is high and that screening detects clinically significant prostate cancer. These results support the rationale for continued screening in such men.
    BJU International 01/2011; 107(1):28-39. DOI:10.1111/j.1464-410X.2010.09648.x · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele frequencies in the surrounding genomic regions reflect adaptive or balancing selection. Such proposals predict long-range linkage disequilibrium (LD) resulting from a selective sweep, although genetic drift in a founder population may also act to create long-distance LD. To date, few studies have used the tools of statistical genomics to examine the likelihood of long-range LD at a deleterious locus in a population that faced a genetic bottleneck. We studied the genotypes of hundreds of women from a large international consortium of BRCA1 and BRCA2 mutation carriers and found that AJ women exhibited long-range haplotypes compared to CNJ women. More than 50% of the AJ chromosomes with the BRCA1 185delAG mutation share an identical 2.1 Mb haplotype and nearly 16% of AJ chromosomes carrying the BRCA2 6174delT mutation share a 1.4 Mb haplotype. Simulations based on the best inference of Ashkenazi population demography indicate that long-range haplotypes are expected in the context of a genome-wide survey. Our results are consistent with the hypothesis that a local bottleneck effect from population size constriction events could by chance have resulted in the large haplotype blocks observed at high frequency in the BRCA1 and BRCA2 regions of Ashkenazi Jews.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current attempts to identify genetic modifiers of BRCA1 and BRCA2 associated risk have focused on a candidate gene approach, based on knowledge of gene functions, or the development of large genome-wide association studies. In this study, we evaluated 24 SNPs tagged to 14 candidate genes derived through a novel approach that analysed gene expression differences to prioritise candidate modifier genes for association studies. We successfully genotyped 24 SNPs in a cohort of up to 4,724 BRCA1 and 2,693 BRCA2 female mutation carriers from 15 study groups and assessed whether these variants were associated with risk of breast cancer in BRCA1 and BRCA2 mutation carriers. SNPs in five of the 14 candidate genes showed evidence of association with breast cancer risk for BRCA1 or BRCA2 carriers (P < 0.05). Notably, the minor alleles of two SNPs (rs7166081 and rs3825977) in high linkage disequilibrium (r² = 0.77), located at the SMAD3 locus (15q22), were each associated with increased breast cancer risk for BRCA2 mutation carriers (relative risk = 1.25, 95% confidence interval = 1.07 to 1.45, P(trend) = 0.004; and relative risk = 1.20, 95% confidence interval = 1.03 to 1.40, P(trend) = 0.018). This study provides evidence that the SMAD3 gene, which encodes a key regulatory protein in the transforming growth factor beta signalling pathway and is known to interact directly with BRCA2, may contribute to increased risk of breast cancer in BRCA2 mutation carriers. This finding suggests that genes with expression associated with BRCA1 and BRCA2 mutation status are enriched for the presence of common genetic modifiers of breast cancer risk in these populations.
    Breast cancer research: BCR 11/2010; 12(6):R102. DOI:10.1186/bcr2785 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel oncogenetic clinic was established in 2002 at the Royal Marsden NHS Foundation Trust offering advice and specialist follow-up for families with a germline mutation in BRCA1 or BRCA2. The remit of this multidisciplinary clinic, staffed by individuals in both oncology and genetics, is to provide individualised screening recommendations, support in decision making, risk reducing strategies, cascade testing, and an extensive research portfolio. A retrospective analysis was performed to evaluate uptake of genetic testing, risk reducing surgery and cancer prevalence in 346 BRCA1/BRCA2 families seen between January 1996 and December 2006. 661 individuals attended the clinic and 406 mutation carriers were identified; 85.8% mutation carriers have chosen to attend for annual follow-up. 70% of mutation carriers elected for risk reducing bilateral salpingo-oophorectomy (RRBSO). 32% of unaffected women chose risk reducing bilateral mastectomy. 32% of women with breast cancer chose contralateral risk reducing mastectomy at time of diagnosis. Some women took over 8 years to decide to have surgery. 91% of individuals approached agreed to participate in research programmes. A novel specialist clinic for BRCA1/2 mutation carriers has been successfully established. The number of mutation positive families is increasing. This, and the high demand for RRBSO in women over 40, is inevitably going to place an increasing demand on existing health resources. Our clinic model has subsequently been adopted in other centres and this will greatly facilitate translational studies and provide a healthcare structure for management and follow-up of such people who are at a high cancer risk.
    Journal of Medical Genetics 07/2010; 47(7):486-91. DOI:10.1136/jmg.2009.072728 · 5.64 Impact Factor

Publication Stats

568 Citations
186.48 Total Impact Points

Institutions

  • 2007–2015
    • University of Otago
      • • Department of Pathology (Christchurch)
      • • Christchurch School of Medicine and Health Sciences
      Taieri, Otago, New Zealand
  • 2008–2011
    • Queensland Institute of Medical Research
      Brisbane, Queensland, Australia
  • 2010
    • Royal Brisbane Hospital
      Brisbane, Queensland, Australia
  • 2006
    • Institute of Cancer Research
      Londinium, England, United Kingdom
  • 2001–2002
    • Canterbury District Health Board
      • Department of Haematology
      Christchurch, Canterbury Region, New Zealand