M. Dominik

University of St Andrews, Saint Andrews, Scotland, United Kingdom

Are you M. Dominik?

Claim your profile

Publications (193)760.53 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present 17 transit light curves of the ultra-short period planetary system WASP-103, a strong candidate for the detection of tidally-induced orbital decay. We use these to establish a high-precision reference epoch for transit timing studies. The time of the reference transit midpoint is now measured to an accuracy of 4.8s, versus 67.4s in the discovery paper, aiding future searches for orbital decay. With the help of published spectroscopic measurements and theoretical stellar models, we determine the physical properties of the system to high precision and present a detailed error budget for these calculations. The planet has a Roche lobe filling factor of 0.58, leading to a significant asphericity; we correct its measured mass and mean density for this phenomenon. A high-resolution Lucky Imaging observation shows no evidence for faint stars close enough to contaminate the point spread function of WASP-103. Our data were obtained in the Bessell $RI$ and the SDSS $griz$ passbands and yield a larger planet radius at bluer optical wavelengths, to a confidence level of 7.3 sigma. Interpreting this as an effect of Rayleigh scattering in the planetary atmosphere leads to a measurement of the planetary mass which is too small by a factor of five, implying that Rayleigh scattering is not the main cause of the variation of radius with wavelength.
    11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present the analysis of time-series observations from 2013 and 2014 of five metal rich ([Fe/H] $>$ -1) globular clusters: NGC~6388, NGC~6441, NGC~6528, NGC~6638, and NGC~6652. The data have been used to perform a census of the variable stars in the central parts of these clusters. The observations were made with the electron multiplying CCD (EMCCD) camera at the Danish 1.54m Telescope at La Silla, Chile, and they were analysed using difference image analysis (DIA) to obtain high-precision light curves of the variable stars. It was possible to identify and classify all of the previously known or suspected variable stars in the central regions of the five clusters. Furthermore, we were able to identify, and in most cases classify 48, 49, 7, 8, and 2 previously unknown variables in NGC~6388, NGC~6441, NGC~6528, NGC~6638, and NGC~6652, respectively. Especially interesting is the case of NGC~6441, for which the variable star population of about 150 stars has been thoroughly examined by previous studies, including a Hubble Space Telescope study. In this paper we are able to present 49 new variable stars for this cluster, of which one (possibly two) are RR Lyrae stars, two are W Virginis stars, and the rest are long period semi-regular/irregular variables on the red giant branch. We have also detected the first double mode RR Lyrae in the cluster.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal combined with extended observations throughout the event allows us to accurately model the observed light curve. The final microlensing solution remains, however, degenerate yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is $M_{\rm p}$ = 1.0 $\pm$ 0.3 $M_{\rm J}$, and the planet is orbiting a star with a mass $M$ = 0.23 $\pm$ 0.07 $M_\odot$. The second possible configuration (2\sigma away) consists of a planet with $M_{\rm p}$ = 0.6 $\pm$ 0.2 $M_{\rm J}$ and host star with $M$ = 0.15 $\pm$ 0.06 $M_{\odot}$. The system is located in the Galactic disk 3-4 kpc towards the Galactic bulge. In both cases, with an orbit size of 2 AU, the planet is a "cold Jupiter" -- located well beyond the "snow line" of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic Bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 -- 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with mu >~ 8 mas/yr. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In <~12 years the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.
    The Astrophysical Journal 10/2014; 794(1):71. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extrasolar planet WASP-67 b is the first hot Jupiter definitively known to undergo only partial eclipses. The lack of the second and third contact point in this planetary system makes it difficult to obtain accurate measurements of its physical parameters. Aims. By using new high-precision photometric data, we confirm that WASP-67 b shows grazing eclipses and compute accurate estimates of the physical properties of the planet and its parent star. Methods. We present high-quality, multi-colour, broad-band photometric observations comprising five light curves covering two transit events, obtained using two medium-class telescopes and the telescope-defocussing technique. One transit was observed through a Bessel-R filter and the other simultaneously through filters similar to Sloan griz. We modelled these data using jktebop. The physical parameters of the system were obtained from the analysis of these light curves and from published spectroscopic measurements. Results. All five of our light curves satisfy the criterion for being grazing eclipses. We revise the physical parameters of the whole WASP-67 system and, in particular, significantly improve the measurements of the planet's radius and density as compared to the values in the discovery paper. The transit ephemeris was also substantially refined. We investigated the variation of the planet's radius as a function of the wavelength, using the simultaneous multi-band data, finding that our measurements are consistent with a flat spectrum to within the experimental uncertainties.
    06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unprecedented range of second-generation gravitational-wave (GW) observatories calls for refining the predictions of potential sources and detection rates. The coalescence of double compact objects (DCOs)---i.e., neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black hole-black hole (BH-BH) binary systems---is the most promising source of GWs for these detectors. We compute detection rates of coalescing DCOs in second-generation GW detectors using the latest models for their cosmological evolution, and implementing inspiral-merger-ringdown (IMR) gravitational waveform models in our signal-to-noise ratio calculations. We find that: (1) the inclusion of the merger/ringdown portion of the signal does not significantly affect rates for NS-NS and BH-NS systems, but it boosts rates by a factor $\sim 1.5$ for BH-BH systems; (2) in almost all of our models BH-BH systems yield by far the largest rates, followed by NS-NS and BH-NS systems, respectively, and (3) a majority of the detectable BH-BH systems were formed in the early Universe in low-metallicity environments. We make predictions for the distributions of detected binaries and discuss what the first GW detections will teach us about the astrophysics underlying binary formation and evolution.
    05/2014;
  • Martin Dominik
    [Show abstract] [Hide abstract]
    ABSTRACT: Studying the amazingly diverse planet zoo provides us with unprecedented opportunities for understanding planet Earth and ultimately ourselves. An assessment of a planet's ``habitability'' reflects our Earth-centric prejudice and can serve to prioritise targets to actually search for signatures of life similar to ours. The probability for life beyond Earth to exist however remains unknown, and studies on habitability or statistics of planetary systems do not change this. But we can leave speculation behind, and embark on a journey of exploration. A sample of detected cosmic habitats would provide us with insight on the conditions for life to emerge, develop, and sustain, but disentangling the biota fraction from the duration of the biotic era would depend particularly on our knowledge about the dynamics of planetary systems. Apart from the fact that planets usually do not come alone, we also must not forget that the minor bodies in the Solar system vastly outnumber the planets. A focus on just what we might consider ``habitable'' planets is too narrow to understand their formation and evolution. While uniqueness prevents understanding, we need to investigate the context and embrace diversity. A comprehensive picture of planet populations can only arise by exploiting a variety of different detection techniques, where not only Kepler but also gravitational microlensing can now enter hitherto uncharted territory below the mass or size of the Earth. There is actually no shortage of planets, the Milky Way alone may host hundreds of billions, and so far we have found only about 1000.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hitherto, rings have been found exclusively around the four giant planets in the Solar System. Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur-that is, one of a class of small objects orbiting primarily between Jupiter and Neptune-with an equivalent radius of 124 9 kilometres (ref. 2). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.
    Nature 03/2014; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a $2.73\pm 0.43\ M_{\rm J}$ planet orbiting a $0.44\pm 0.07\ M_{\odot}$ early M-type star. The distance to the lens is $4.97\pm 0.29$\ kpc and the projected separation between the host star and its planet at the time of the event is $3.45\pm 0.26$ AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.
    The Astrophysical Journal 02/2014; 782(1):48. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out during 4 years (2007-2010) at the 1.5m Cassini telescope in Loiano ("Astronomical Observatory of BOLOGNA", OAB) plus 10 days of data taken in 2010 at the 2m Himalayan Chandra Telescope (HCT) monitoring the central part of M31 (two fields of about 13'x12.6'). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations: as a result we detect 3 microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both "self lensing" and "MACHO lensing" lens populations, given by M31 stars and dark matter halo MACHOs, in the M31 and the Milky Way (MW), respectively. The total number of events is compatible with the expected self-lensing rate. Specifically, we evaluate an expected signal of about 2 self-lensing events. As for MACHO lensing, for full 0.5 (0.01) solar mass MACHO halos, our prediction is for about 4 (7) events. The comparatively small number of expected MACHO versus self lensing events, together with the small number statistics at disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would be MACHO population, f, of about 15% for 0.5 solar mass MACHOs.
    The Astrophysical Journal 01/2014; 783(2). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Black hole - neutron star (BHNS) binaries are a holy grail of physics. Their discovery will provide astronomers with a new laboratory to hunt for gravitational waves. This study looked at theoretical models of BHNS binary systems and aimed to predict the number of BHNS systems potentially detectible with present and future radio telescopes. Collaborators provided two models of the galactic BHNS population, a "worst-case scenario" and a "best-case scenario”. We then provided each BHNS system in each model with parameters based on known distributions of period, pulse width, magnetic field strength, pulse orientation, luminosity, galactic coordinates, and spectral index. Our results show that the number of potentially detectable systems with current radio telescopes is between 0 and 100, and that the number of potentially detectable systems with planned future telescopes could reach as many as 2000. Considering that no BHNS binary systems have yet been detected, our results are consistent with observations up to the present.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have found that Proxima Centauri, the star closest to our Sun, will pass close to a pair of faint background stars in the next few years. Using Hubble Space Telescope (HST) images obtained in 2012 October, we determine that the passage close to a mag 20 star will occur in 2014 October (impact parameter 1.6"), and to a mag 19.5 star in 2016 February (impact parameter 0.5"). As Proxima passes in front of these stars, the relativistic deflection of light will cause shifts in the positions of the background stars by ~0.5 and 1.5 mas, respectively, readily detectable by HST imaging, and possibly by Gaia and ground-based facilities such as VLT. Measurement of these astrometric shifts offers a unique and direct method to measure the mass of Proxima. Moreover, if Proxima has a planetary system, the planets may be detectable through their additional microlensing signals, although the probability of such detections is small. With astrometric accuracies of 0.03 mas (achievable with HST spatial scanning), centroid shifts caused by Jovian planets are detectable at separations of up to 2.0" (corresponding to 2.6 AU at the distance of Proxima), and centroid shifts by Earth-mass planets are detectable within a small band of 8 mas (corresponding to 0.01 AU) around the source trajectories. Jovian planets within a band of about 28 mas (corresponding to 0.036 AU) around the source trajectories would produce a brightening of the source by >0.01 mag and could hence be detectable. Estimated timescales of the astrometric and photometric microlensing events due to a planet range from a few hours to a few days, and both methods would provide direct measurements of the planetary mass.
    12/2013; 782(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M_host ~ 4 Jupiter masses hosting a sub-Earth mass moon. The data are well fit by this exomoon model, but an alternate star+planet model fits the data almost as well. Nevertheless, these results indicate the potential of microlensing to detect exomoons, albeit ones that are different from the giant planet moons in our solar system. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M pi_rel, where M is the lens system mass and pi_rel is the lens-source relative parallax. If the lens system is nearby (large pi_rel), then M is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, mu_rel = 19.6 +- 1.6 mas/yr, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, the alternate solution has a lower proper motion, which is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of M_host = 0.12 (+0.19 -0.06) M_solar and m_comp = 18 (+28 -100 M_earth, at a projected separation of a_perp ~ 0.84 AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the low mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.
    The Astrophysical Journal 12/2013; 785(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11+/-0.01 M_{sun} and Mp = 9.2+/-2.2M_Earth, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at DL = 0.81 +/- 0.10 kpc with projected separation r = 0.92 +/- 0.16 AU. Because of the host's a-priori-unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions.
    The Astrophysical Journal 12/2013; 779:91. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observations of accretion disks around young brown dwarfs have led to the speculation that they may form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects around brown dwarfs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the discovery of a planetary-mass object orbiting a field brown dwarf via gravitational microlensing, OGLE-2012-BLG-0358Lb. The system is a low secondary/primary mass ratio (0.080 +- 0.001), relatively tightly-separated (~0.87 AU) binary composed of a planetary-mass object with 1.9 +- 0.2 Jupiter masses orbiting a brown dwarf with a mass 0.022 M_Sun. The relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk around the brown dwarf host, in a manner analogous to planets.
    The Astrophysical Journal 11/2013; 778:38. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The exoplanet detection capability of microlensing observations is compared for several telescopes. As a part of our studies, we consider the models for sky brightness and seeing, calibrated by fitting to data from the OGLE survey and RoboNet observations in 2011.
    09/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We summarize the status of a computer simulator for microlens planet surveys. The simulator generates synthetic light curves of microlensing events observed with specified networks of telescopes over specified periods of time. Particular attention is paid to models for sky brightness and seeing, calibrated by fitting to data from the OGLE survey and RoboNet observations in 2011. Time intervals during which events are observable are identified by accounting for positions of the Sun and the Moon, and other restrictions on telescope pointing. Simulated observations are then generated for an algorithm that adjusts target priorities in real time with the aim of maximizing planet detection zone area summed over all the available events. The exoplanet detection capability of observations was compared for several telescopes.
    08/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambiguity between the planetary and binary-source interpretations. In this paper, we present analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive planetary signals.
    The Astrophysical Journal 08/2013; 778(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet–star mass ratio of q = [9.5 ± 2.1] × 10−5 via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the Microlensing Observations in Astrophysics survey, real-time light-curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at Ml = 0.64+0.21 −0.26M andDl = 5.9+0.9 −1.4 kpc, respectively, so themass and separation of the planet areMp = 20+7 −8M⊕ and a = 3.3+1.4 −0.8 AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprises four cold Neptune/super-Earths, five gas giant planets, and another sub- Saturn mass planet whose nature is unclear. The discovery of these 10 cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dNpl/d log q ∝ q−0.7±0.2 with a 95% confidence level upper limit of n < −0.35 (where dNpl/d log q ∝ qn). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.
    The Astrophysical Journal 07/2013; 710:1641. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new ground-based, multi-colour, broad-band photometric measurements of the physical parameters, transmission and emission spectra of the transiting extrasolar planet WASP-19b. The measurements are based on observations of 8 transits and four occultations using the 1.5m Danish Telescope, 14 transits at the PEST observatory, and 1 transit observed simultaneously through four optical and three near-infrared filters, using the GROND instrument on the ESO 2.2m telescope. We use these new data to measure refined physical parameters for the system. We find the planet to be more bloated and the system to be twice as old as initially thought. We also used published and archived datasets to study the transit timings, which do not depart from a linear ephemeris. We detected an anomaly in the GROND transit light curve which is compatible with a spot on the photosphere of the parent star. The starspot position, size, spot contrast and temperature were established. Using our new and published measurements, we assembled the planet's transmission spectrum over the 370-2350 nm wavelength range and its emission spectrum over the 750-8000 nm range. By comparing these data to theoretical models we investigated the theoretically-predicted variation of the apparent radius of WASP-19b as a function of wavelength and studied the composition and thermal structure of its atmosphere. We conclude that: there is no evidence for strong optical absorbers at low pressure, supporting the common idea that the planet's atmosphere lacks a dayside inversion; the temperature of the planet is not homogenized, because the high warming of its dayside causes the planet to be more efficient in re-radiating than redistributing energy to the night side; the planet seems to be outside of any current classification scheme.
    Astronomy and Astrophysics 06/2013; 562. · 5.08 Impact Factor

Publication Stats

1k Citations
760.53 Total Impact Points

Institutions

  • 2–2014
    • University of St Andrews
      • School of Physics and Astronomy
      Saint Andrews, Scotland, United Kingdom
  • 2012
    • Pierre and Marie Curie University - Paris 6
      • Institut d'astrophysique de Paris
      Paris, Ile-de-France, France
  • 2011
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
    • University of Hawaiʻi at Hilo
      Hilo, Hawaii, United States
  • 2008–2011
    • University of Warsaw
      • Astronomical Observatory
      Warszawa, Masovian Voivodeship, Poland
    • Scottish Universities Physics Alliance
      Glasgow, Scotland, United Kingdom
  • 2009
    • INFN - Istituto Nazionale di Fisica Nucleare
      Frascati, Latium, Italy
  • 2000
    • Université Paris-Sud 11
      • Laboratoire de l'Accélérateur Linéaire (LAL)
      Orsay, Île-de-France, France
  • 1994–1999
    • Technische Universität Dortmund
      Dortmund, North Rhine-Westphalia, Germany
  • 1998
    • Space Telescope Science Institute
      Baltimore, Maryland, United States