Lucy Liaw

University of Maine, Orono, Minnesota, United States

Are you Lucy Liaw?

Claim your profile

Publications (85)474.54 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output.
    Frontiers in Genetics 01/2014; 5:23.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The quantitative analysis of blood vessel volumes from magnetic resonance angiograms (MRA) or μCT images is difficult and time-consuming. This fact, when combined with a study that involves multiple scans of multiple subjects, can represent a significant portion of research time. In order to enhance analysis options and to provide an automated and fast analysis method, we developed a software plugin for the ImageJ and Fiji image processing frameworks that enables the quick and reproducible volume quantification of blood vessel segments. The novel plugin named Volume Calculator (VolCal), accepts any binary (thresholded) image and produces a three-dimensional schematic representation of the vasculature that can be directly manipulated by the investigator. Using MRAs of the mouse hindlimb ischemia model, we demonstrate quick and reproducible blood vessel volume calculations with 95 - 98% accuracy. In clinical settings this software may enhance image interpretation and the speed of data analysis and thus enhance intervention decisions for example in peripheral vascular disease or aneurysms. In summary, we provide a novel, fast and interactive quantification of blood vessel volumes for single blood vessels or sets of vessel segments with particular focus on collateral formation after an ischemic insult.
    The Open Medical Imaging Journal 10/2013; 7:19-27.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Deregulated vascular smooth muscle cell (VSMC) proliferation contributes to multiple vascular pathologies, and Notch signaling regulates VSMC phenotype. Objective: Previous work focused on Notch1 and Notch3 in VSMC during vascular disease; however, the role of Notch2 is unknown. Because injured murine carotid arteries display increased Notch2 in VSMC as compared to uninjured arteries, we sought to understand the impact of Notch2 signaling in VSMC. Methods and Results: In human primary VSMC, Jagged-1 (Jag-1) significantly reduced proliferation through specific activation of Notch2. Increased levels of p27(kip1) were observed downstream of Jag-1/Notch2 signaling, and required for cell cycle exit. Jag-1 activation of Notch resulted in increased phosphorylation on serine 10, decreased ubiquitination and prolonged half-life of p27(kip1). Jag-1/Notch2 signaling robustly decreased S-phase kinase associated protein (Skp2), an F-box protein that degrades p27(kip1) during G1. Over expression of Skp2 prior to Notch activation by Jag-1 suppressed the induction of p27(kip1). Additionally, increased Notch2 andp27(kip1) expression was co-localized to the non-proliferative zone of injured arteries as indicated by co-staining with proliferating cell nuclear antigen (PCNA), whereas Notch3 was expressed throughout normal and injured arteries, suggesting Notch2 may negatively regulate lesion formation. Conclusions: We propose a receptor specific function for Notch2 in regulating Jag-1-induced p27(kip1) expression and growth arrest in VSMC. During vascular remodeling, co-localization of Notch2 and p27(kip1)to the non-proliferating region supports a model where Notch2 activation may negatively regulate VSMC proliferation to lessen the severity of the lesion. Thus Notch2 is a potential target for control of VSMC hyperplasia.
    Circulation Research 08/2013; · 11.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Changes in the vascular smooth muscle cell (VSMC) contractile phenotype occur in pathological states such as restenosis and atherosclerosis. Multiple cytokines, signaling through receptor tyrosine kinases (RTK) and PI3K/Akt and MAPK/ERK pathways, regulate these phenotypic transitions. The Spry proteins are feedback modulators of RTK signaling, but their specific roles in VSMC have not been established. METHODOLOGYPRINCIPAL FINDINGS: Here, we report for the first time that Spry1, but not Spry4, is required for maintaining the differentiated state of human VSMC in vitro. While Spry1 is a known MAPK/ERK inhibitor in many cell types, we found that Spry1 has little effect on MAPK/ERK signaling but increases and maintains Akt activation in VSMC. Sustained Akt signaling is required for VSMC marker expression in vitro, while ERK signaling negatively modulates Akt activation and VSMC marker gene expression. Spry4, which antagonizes both MAPK/ERK and Akt signaling, suppresses VSMC differentiation marker gene expression. We show using siRNA knockdown and ChIP assays that FoxO3a, a downstream target of PI3K/Akt signaling, represses myocardin promoter activity, and that Spry1 increases, while Spry4 decreases myocardin mRNA levels. CONCLUSIONS: Together, these data indicate that Spry1 and Spry4 have opposing roles in VSMC phenotypic modulation, and Spry1 maintains the VSMC differentiation phenotype in vitro in part through an Akt/FoxO/myocardin pathway.
    PLoS ONE 01/2013; 8(3):e58746. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BMP9 signaling has been implicated in hereditary hemorrhagic telangiectasia (HHT) and vascular remodeling, acting via the HHT target genes, endoglin and ALK1. This study sought to identify endothelial BMP9-regulated proteins that could affect the HHT phenotype. Gene ontology analysis of cDNA microarray data obtained following BMP9 treatment of primary human endothelial cells indicated regulation of chemokine, adhesion, and inflammation pathways. These responses included the upregulation of the chemokine, CXCL12/SDF1 and downregulation of its receptor, CXCR4. Quantitative mass spectrometry identified additional secreted proteins, including the chemokine CXCL10/IP10. RNA knockdown of endoglin and ALK1 impaired SDF1/CXCR4 regulation by BMP9. Because of the association of SDF1 with ischemia, we analyzed its expression under hypoxia in response to BMP9 in vitro, and during the response to hindlimb ischemia, in endoglin-deficient mice. BMP9 and hypoxia were additive inducers of SDF1 expression. Moreover, data suggest that endoglin deficiency impaired SDF1 expression in endothelial cells in vivo. Our data implicate BMP9 in regulation of the SDF1/CXCR4 chemokine axis in endothelial cells and point to a role for BMP9 signaling via endoglin in a switch from an SDF1-responsive autocrine phenotype to an SDF1 non-responsive paracrine state that represses endothelial cell migration and may promote vessel maturation.
    Blood 09/2012; · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cells (HSC) are found in several independent sites embryonically. Loss-of-function studies indicated that Notch1, but not Notch2 signaling was required for HSC emergence from the aortic-gonado-mesonephros (AGM) region. We previously showed that constitutive Notch1 activation impaired primitive erythroid differentiation, but its effects on HSC emergence from the AGM region were not studied. To further define specific roles of Notch receptors, we characterized HSC in mouse embryos expressing either Notch1 intracellular domain (ICD) or Notch4ICD in VE-cadherin or SM22α expressing populations. Although embryonic Notch1 activation in VE-cadherin populations led to lethality after E13.5, earlier defects in the fetal liver were observed. Embryos were analyzed at E12.5 to assess hematopoiesis and the phenotype of developing cells in the AGM region. We found that activation of Notch1 in the endothelial compartment in VE-cadherin expressing cells resulted in the absence of intra-aortic clusters and defects in fetal liver hematopoiesis. In contrast, although Notch4 expression is regulated during fetal hematopoiesis, activation of Notch4 in VE-cadherin expressing populations did not affect HSC phenotype, although later vascular remodeling was impaired. Likewise, activation of Notch1 in SM22α positive populations had no significant effect on hematopoiesis. Our results indicate a cell type-dependent activity and distinct features of Notch1 versus Notch4 signaling and their impact on HSC generation.
    Transgenic Research 08/2012; · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylases (HDACs) modify smooth muscle cell (SMC) proliferation and affect neointimal lesion formation by regulating cell cycle progression. HDACs might also regulate SMC differentiation, although this is not as well characterized. Notch signaling activates SMC contractile markers and the differentiated phenotype in human aortic SMCs. Using this model, we found that HDAC inhibition antagonized the ability of Notch to increase levels of smooth muscle α-actin, calponin1, smooth muscle 22α, and smooth muscle myosin heavy chain. However, inhibition of HDAC activity did not suppress Notch activation of the HRT target genes. In fact, HDAC inhibition increased activation of the canonical C-promoter binding factor-1 (CBF-1)-mediated Notch pathway, which activates HRT transcription. Although CBF-1-mediated Notch signaling was increased by HDAC inhibition in human SMCs and in a C3H10T1/2 model, SMC differentiation was inhibited in both cases. Further characterization of downstream Notch signaling pathways showed activation of the c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and PI3K/Akt pathways. The activation of these pathways was sensitive to HDAC inhibition and was positively correlated with the differentiated phenotype. Our studies define novel signaling pathways downstream of Notch signaling in human SMCs. In addition to the canonical CBF-1 pathway, Notch stimulates c-Jun N-terminal kinase, mitogen-activated protein kinase, and PI3K cascades. Both canonical and noncanonical pathways downstream of Notch promote a differentiated, contractile phenotype in SMCs. Although CBF-1-mediated Notch signaling is not suppressed by HDAC inhibition, HDAC activity is required for Notch differentiation signals through mitogen-activated protein kinase and PI3K pathways in SMCs. (J Am Heart Assoc. 2012;1:e000901 doi: 10.1161/JAHA.112.000901).
    Journal of the American Heart Association. 06/2012; 1(3):e000901.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discovered the gene Collagen Triple Helix Repeat Containing 1 (Cthrc1) and reported its developmental expression and induction in adventitial cells of injured arteries and dermal cells of skin wounds. The role of Cthrc1 in normal adult tissues has not yet been determined. We generated mutant mice with a novel Cthrc1 null allele by homologues recombination. Cthrc1 null mice appeared developmentally normal. On the C57BL/6J background, livers from Cthrc1 null mice accumulated vast quantities of lipid, leading to extensive macrovesicular steatosis. Glycogen levels in skeletal muscle and liver of Cthrc1 null mice on the 129S6/SvEv background were significantly increased. However, Cthrc1 expression is not detectable in these tissues in wild-type mice, suggesting that the lipid and glycogen storage phenotype may be a secondary effect due to loss of Cthrc1 production at a distant site. To investigate potential hormonal functions of Cthrc1, tissues from adult mice and pigs were examined for Cthrc1 expression by immunohistochemistry with monoclonal anti-Cthrc1 antibodies. In pigs, Cthrc1 was detected around chromophobe cells of the anterior pituitary, and storage of Cthrc1 was observed in colloid-filled follicles and the pituitary cleft. Pituitary follicles have been observed in numerous vertebrates including humans but none of the known pituitary hormones have hitherto been detected in them. In C57BL/6J mice, however, Cthrc1 was predominantly expressed in the paraventricular and supraoptic nucleus of the hypothalamus but not in the posterior pituitary. In human plasma, we detected Cthrc1 in pg/ml quantities and studies with (125)I-labeled Cthrc1 revealed a half-life of 2.5 hours in circulation. The highest level of Cthrc1 binding was observed in the liver. Cthrc1 has characteristics of a circulating hormone generated from the anterior pituitary, hypothalamus and bone. Hormonal functions of Cthrc1 include regulation of lipid storage and cellular glycogen levels with potentially broad implications for cell metabolism and physiology.
    PLoS ONE 01/2012; 7(10):e47142. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adipose tissue development is dependent on multiple signaling mechanisms and cell-cell interactions that regulate adipogenesis, angiogenesis and extracellular remodeling. The Notch signaling pathway is an important cell-fate determinant whose role in adipogenesis is not clearly defined. To address this issue, we examined the effect of inhibition of Notch signaling by soluble-Jagged1 in the 3T3-L1 preadipocyte line. In vitro, soluble-Jagged1 expression in 3T3-L1 cells altered cell morphology, increased the rate of cell proliferation and induced an early transcriptional response to differentiation stimuli. However, these cells did not form mature adipocytes due to their inability to exit the cell-cycle in response to serum-starvation and glucocorticoid-induced cell-cycle arrest. In contrast, subcutaneous allografts of soluble-Jagged1 cells formed larger fat pads containing lipid-filled adipocytes with improved neovascularization compared with controls. Since adipogenesis is tightly associated with angiogenesis, we evaluated the influence of soluble-Jagged1 on endothelial cells by culturing them in cell-free conditioned media from preadipocytes. Soluble Jagged1-mediated inhibition of Notch signaling increased levels of secreted cytokines, potentially contributing to the improved cell growth and proliferation observed in these cultures. Our findings demonstrate an initial requirement of Notch signaling inactivation for preadipocyte cell commitment and support the hypothesis that cell-to-cell crosstalk between the preadipocytes and endothelial cells is required for neovascularization and remodeling of the tissue to promote hyperplasia and hypertrophy of differentiating adipocytes.
    Adipocyte. 01/2012; 1(1):46-57.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling in the cardiovascular system is important during embryonic development, vascular repair of injury, and vascular pathology in humans. The vascular smooth muscle cell (VSMC) expresses multiple Notch receptors throughout its life cycle, and responds to Notch ligands as a regulatory mechanism of differentiation, recruitment to growing vessels, and maturation. The goal of this review is to provide an overview of the current understanding of the molecular basis for Notch regulation of VSMC phenotype. Further, we will explore Notch interaction with other signaling pathways important in VSMC.
    Frontiers in Physiology 01/2012; 3:81.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.
    The British journal of nutrition 12/2011; 108(6):1025-33. · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor-β (TGF-β) plays an important role in vascular homeostasis through effects on vascular smooth muscle cells (SMC). Fine-tuning of TGF-β signaling occurs at the level of ALK receptors or Smads, and is regulated with cell type specificity. Our goal was to understand TGF-β signaling in regulating SMC differentiation marker expression in human SMC. Activation of Smads was characterized, and loss- and gain-of-function reagents used to define ALK pathways. In addition, Smad-independent mechanisms were determined. TGF-β type I receptors, ALK1 and ALK5, are expressed in human SMC, and TGF-β1 phosphorylates Smad1/5/8 and Smad2/3 in a time- and dosage-dependent pattern. ALK5 activity, not bone morphogenetic protein type I receptors, is required for Smad phosphorylation. Endoglin, a TGF-β type III receptor, is a TGF-β1 target in SMC, yet endoglin does not modify TGF-β1 responsiveness. ALK5, not ALK1, is required for TGF-β1-induction of SMC differentiation markers, and ALK5 signals through an ALK5/Smad3- and MAP kinase-dependent pathway. The definition of the specific signaling downstream of TGF-β regulating SMC differentiation markers will contribute to a better understanding of vascular disorders involving changes in SMC phenotype.
    Journal of Vascular Research 08/2011; 48(6):485-94. · 2.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of Notch signaling by Jagged-1 (Jag-1) in vascular smooth muscle cells (VSMC) promotes a differentiated phenotype characterized by increased expression of contractile proteins. Recent studies show that microRNAs (miR)-143/145 regulates VSMC phenotype. The serum response factor (SRF)/myocardin complex binds to CArG sequences to activate miR-143/145 transcription, but no other regulators are known in VSMC. Using miR arrays, we found miR-143/145 induced following expression of a constitutively active Notch1 intracellular domain (N1ICD). We hypothesized that miR-143/145 is required for Jag-1/Notch-induced VSMC differentiation. Activation of Notch receptors by Jag-1 caused CBF1-dependent up-regulation of miR-143/145, increased differentiation, and decreased proliferation. Conversely, inhibiting basal Notch signaling decreased steady state levels of miR-143/145. Using SRF knockdown, we found that Jag-1/Notch induction of miR-143/145 is SRF independent, although full acquisition of contractile markers requires SRF. Using miR-143/145 promoter reporter constructs we show Jag-1/Notch increases promoter activity, and this is dependent on intact CBF1 consensus sites within the promoter. Chromatin immunoprecipitation (ChIP) assays revealed that N1ICD-containing complexes bind to CBF1 sites in the miR-143/145 promoter. We also identified N1ICD complex binding to CBF1 sites within the endogenous human miR-143/145 promoter. Using miR-143/145-interfering oligonucleotides, we demonstrate that Jag-1/Notch signaling requires induction of both miR-143 and miR-145 to promote the VSMC contractile phenotype. Thus, miR-143/145 is a novel transcriptional target of Jag-1/Notch signaling in VSMC. We propose miR-143/145 as activated independently by Jag-1/Notch and SRF in parallel pathways. Multiple pathways converging on miR-143/145 provides potential for fine-tuning or amplification of VSMC differentiation signals.
    Journal of Biological Chemistry 06/2011; 286(32):28312-21. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the intention to modulate gene expression in vascular mural cells of remodeling vessels, we generated and characterized transgenic mouse lines with Cre recombinase under the control of the platelet-derived growth factor receptor-β promoter, referred to as Tg(Pdgfrb-Cre)(35Vli) . Transgenic mice were crossed with the Gt(ROSA)26Sor(tm1Sor) strain and examined for Cre activation by β-galactosidase activity, which was compared with endogenous Pdgfrb expression. In addition, Pdgfrb-Cre mice were used to drive expression of a conditional myc-tagged Cthrc1 transgene. There was good overlap of β-galactosidase activity with endogenous Pdgfrb immunoreactivity. However, dedifferentiation of vascular mural cells induced by carotid artery ligation revealed a dramatic discrepancy between ROSA26 reporter activity and Pdgfrb promoter driven Cre dependent myc-tagged Cthrc1 transgene expression. Our studies demonstrate the capability of the Pdgfrb-Cre mouse to drive conditional transgene expression as a result of prior Cre-mediated recombination in tissues known to express endogenous Pdgfrb. In addition, the study shows that ROSA26 promoter driven reporter mice are not suitable for lineage marking of smooth muscle in remodeling blood vessels.
    genesis 05/2011; 49(8):673-80. · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FGF1, a widely expressed proangiogenic factor involved in tissue repair and carcinogenesis, is released from cells through a non-classical pathway independent of endoplasmic reticulum and Golgi. Although several proteins participating in FGF1 export were identified, genetic mechanisms regulating this process remained obscure. We found that FGF1 export and expression are regulated through Notch signaling mediated by transcription factor CBF1 and its partner MAML. The expression of a dominant negative (dn) form of CBF1 in 3T3 cells induces transcription of FGF1 and sphingosine kinase 1 (SphK1), which is a component of FGF1 export pathway. dnCBF1 expression stimulates the stress-independent release of transduced FGF1 from NIH 3T3 cells and endogenous FGF1 from A375 melanoma cells. NIH 3T3 cells transfected with dnCBF1 form colonies in soft agar and produce rapidly growing highly angiogenic tumors in nude mice. The transformed phenotype of dnCBF1 transfected cells is efficiently blocked by dn forms of FGF receptor 1 and S100A13, which is a component of FGF1 export pathway. FGF1 export and acceleration of cell growth induced by dnCBF1 depend on SphK1. Similar to dnCBF1, dnMAML transfection induces FGF1 expression and release, and accelerates cell proliferation. The latter effect is strongly decreased in FGF1 null cells. We suggest that the regulation of FGF1 expression and release by CBF1-mediated Notch signaling can play an important role in tumor formation.
    Journal of Cellular Physiology 02/2011; 226(11):3064-75. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling has a critical role in vascular development and morphogenesis. Activation of Notch in endothelial cells led to a senescence-like phenotype with loss of barrier function. Our objective was to understand the molecular pathways mediating this phenotype. Human primary endothelial cells increase expression of Notch receptors and ligands during propagation in vitro toward natural senescence. This senescence was induced at low passage with Notch activation. We characterized the pathways activated downstream of Notch signaling. Notch was activated by Delta-like 4 ligand or constitutively active Notch receptors and measured for cell proliferation, migration, and sprouting. Notch signaling triggered early senescence in low-passage cells, characterized by increased p53 and p21 expression. The senescence phenotype was associated with hyperpermeability of the monolayer, with disrupted vascular endothelial cadherin and β-catenin levels and localization. Consistent with changes in cell shape and contact, we demonstrated that Notch activation increases myosin light chain phosphorylation by activating Rho kinase. Inhibition of Rho abrogated Notch-induced myosin light chain phosphorylation and led to enhanced barrier function by reorganizing F-actin to β-catenin-containing cell-cell adherens junctions. Our findings show that RhoA/Rho kinase regulation by Notch signaling in endothelial cells triggers a senescence phenotype associated with endothelial barrier dysfunction.
    Arteriosclerosis Thrombosis and Vascular Biology 01/2011; 31(4):876-82. · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homologous recombination-based gene targeting using Mus musculus embryonic stem cells has greatly impacted biomedical research. This study presents a powerful new technology for more efficient and less time-consuming gene targeting in mice using embryonic injection of zinc-finger nucleases (ZFNs), which generate site-specific double strand breaks, leading to insertions or deletions via DNA repair by the nonhomologous end joining pathway. Three individual genes, multidrug resistant 1a (Mdr1a), jagged 1 (Jag1), and notch homolog 3 (Notch3), were targeted in FVB/N and C57BL/6 mice. Injection of ZFNs resulted in a range of specific gene deletions, from several nucleotides to >1000 bp in length, among 20-75% of live births. Modified alleles were efficiently transmitted through the germline, and animals homozygous for targeted modifications were obtained in as little as 4 months. In addition, the technology can be adapted to any genetic background, eliminating the need for generations of backcrossing to achieve congenic animals. We also validated the functional disruption of Mdr1a and demonstrated that the ZFN-mediated modifications lead to true knockouts. We conclude that ZFN technology is an efficient and convenient alternative to conventional gene targeting and will greatly facilitate the rapid creation of mouse models and functional genomics research.
    Genetics 10/2010; 186(2):451-9. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulatory elements of the Tie2/Tek promoter are commonly used in mouse models to direct transgene expression to endothelial cells. Tunica intima endothelial kinase 2 (Tie2) is also expressed in hematopoietic cells, although this has not been fully characterized. We determine the lineages of adult hematopoietic cells derived from Tie2-expressing populations using Tie2-Cre;Rosa26R-EYFP mice. In Tie2-Cre;Rosa26R-EYFP mice, analysis of bone marrow cells showed Cre-mediated recombination in 85% of the population. In adult bone marrow and spleen, we analyzed subclasses of early hematopoietic progenitors, T cells, monocytes, granulocytes, and B cells. We found that ∼ 84% of each lineage was EYFP(+), and nearly all cells that come from Tie2-expressing lineages are CD45(+), confirming widespread contribution to definitive hematopoietic cells. In addition, more than 82% of blood cells within the embryonic yolk sac were of Tie2(+) origin. Our findings of high levels of Tie2-Cre recombination in the hematopoietic lineage have implications for the use of the Tie2-Cre mouse as a lineage-restricted driver strain.
    genesis 09/2010; 48(9):563-7. · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A role for osteopontin (OPN) in promoting disease activity of multiple sclerosis or its animal model experimental autoimmune encephalomyelitis (EAE) has recently been suggested. As the biological activity of OPN is heavily influenced by posttranslational processing, we investigated the capacity of matrix metalloproteinase (MMP)-12 to cleave OPN and determined whether this influenced disease activity. We found that OPN mRNA and protein expression in the spinal cord increased with EAE disease in C57BL/6 mice concurrently with MMP-12 expression. A Western blot of EAE and control spinal cords revealed different OPN-immunoreactive bands, with a pattern that was similar to MMP-12 cleavage of recombinant OPN in vitro. In addition, OPN fragments in the spinal cord of EAE-afflicted mice were reduced in MMP-12(-/-) mice compared with wild-type controls. However, examination of OPN(-/-) mice in short- and long-term experiments revealed no difference in EAE outcomes from wild-type animals. OPN/MMP-12 double null mice were generated, and it was revealed that MMP-12(-/-) mice had a worsening of disease compared with wild-type mice, which returned to wild-type levels in the OPN/MMP-12 double null mice. These results suggest that EAE disease activity may be modulated by the cleavage of OPN by MMP-12.
    American Journal Of Pathology 09/2010; 177(3):1448-58. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of bone and adipose tissue are linked processes arising from a common progenitor cell, but having an inverse relationship in disease conditions such as osteoporosis. Cellular differentiation of both tissues relies on growth factor cues, and we focus this study on Sprouty1 (Spry1), an inhibitor of growth factor signaling. We tested whether Spry1 can modify the development of fat cells through its activity in regulating growth factors known to be important for adipogenesis. We utilized conditional expression and genetic-null mouse models of Spry1 in adipocytes using the fatty acid binding promoter (aP2). Conditional deletion of Spry1 results in 10% increased body fat and decreased bone mass. This phenotype was rescued on Spry1 expression, which results in decreased body fat and increased bone mass. Ex vivo bone marrow experiments indicate Spry1 in bone marrow and adipose progenitor cells favors differentiation of osteoblasts at the expense of adipocytes by suppressing CEBP-beta and PPARgamma while up regulating TAZ. Age and gender-matched littermates expressing only Cre recombinase were used as controls. Spry1 is a critical regulator of adipocyte differentiation and mesenchymal stem cell (MSC) lineage allocation, potentially acting through regulation of CEBP-beta and TAZ.
    The FASEB Journal 09/2010; 24(9):3264-73. · 5.70 Impact Factor

Publication Stats

4k Citations
474.54 Total Impact Points

Institutions

  • 2013
    • University of Maine
      Orono, Minnesota, United States
  • 1999–2012
    • Maine Medical Center Research Institute
      Scarborough, Maine, United States
  • 2008
    • Boston University
      Boston, Massachusetts, United States
    • University of Southern Maine
      • Department of Applied Medical Sciences
      Gorham, Maine, United States
    • University of New Hampshire
      Durham, New Hampshire, United States
    • University of Portland
      Portland, Oregon, United States
  • 1993–2007
    • University of Washington Seattle
      • • Department of Bioengineering
      • • Department of Pathology
      Seattle, WA, United States
  • 1996–1998
    • Howard Hughes Medical Institute
      Maryland, United States
  • 1995–1998
    • Vanderbilt University
      • Vanderbilt Center for Stem Cell Biology
      Nashville, MI, United States