Lin Zhang

China Pharmaceutical University, Nan-ching-hsü, Jiangxi Sheng, China

Are you Lin Zhang?

Claim your profile

Publications (3)10.09 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Danshensu is an active water-soluble component from Salvia Miltiorrhiza, which has been demonstrated holding multiple mechanisms for the regulation of cardiovascular system. However, the relative contribution of danshensu to its multiple cardiovascular activities remains largely unknown. To develop an artificial neural network (NN) model simultaneously characterizing danshensu pharmacokinetics and multiple cardiovascular activities in acute myocardial infarction (AMI) rats. The relationship between danshensu pharmacokinetics (PK) and pharmacodynamics (PD) were evaluated using contribution values. Danshensu was intraperitoneally injected at a single dose of 20mg/kg to AMI rats induced by coronary artery ligation. Plasma levels of danshensu, cardiac troponin T (cTnT), total homocysteine (Hcy) and reduced glutathione (GSH) were quantified. A back-propagation NN model was developed to characterize the PK and PD profiles of danshensu, in which the input variables contained time, area under plasma concentration-time curve (AUC) of danshensu and rat weights (covariate). Relative contribution of input variable to the output neurons was evaluated using neuron connection weights according to Garson's algorithm. The kinetics of contribution values was also compared and was validated using bootstrap resampling method. Danshensu exerted significant cTnT-lowering, Hcy- and GSH-elevating effect, and these marker profiles were well captured by the trained NN model. The calculation of relative contributions revealed that the effect of danshensu on the PD marker could be ranked as cTnT>GSH>Hcy, while the effect of AMI disease on the PD marker could be ranked in the following order: cTnT>Hcy>GSH. The activity of transsulfuration pathway was quite obvious under the AMI state. NN is a powerful tool linking PK and PD profiles of danshensu with multiple cardioprotective mechanisms, it provides a simple method for identifying and ranking relative contribution to the multiple therapeutic effects of the drug.
    Journal of ethnopharmacology 09/2011; 138(1):126-34. DOI:10.1016/j.jep.2011.08.069 · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the pharmacokinetic interactions induced by content variation of the main water-soluble components of Danshen injection in rats. Intravenous Danshen injection (control) or Danshen injection with danshensu (DSS), protocatechuic aldehyde (PAL), salvianolic acid A (Sal A) or salvianolic acid B (Sal B) were administered to female Sprague Dawley rats. Plasma concentrations of DSS, Sal A, PAL and its oxidative metabolite protocatechuic acid (PA) were analyzed simultaneously with LC-MS/MS; concentrations of Sal B were determined by the LC-MS method. Non-compartmental pharmacokinetic parameters were calculated and compared for identifying the pharmacokinetic interactions among these components. Compared with the control group, the DSS, Sal A, and Sal B groups had significant increases in AUC(0-infinity) in response to elevated concentrations of PAL (by 78.1%, 51.0%, and 82.9%, respectively), while the clearances (CL) were markedly reduced (by 42.5%, 32.9%, and 46.8%, respectively). Similarly, Sal A increased the AUC(0-infinity) of DSS and Sal B (26.7% and 82.4%, respectively) and substantially decreased their clearances (21.4% and 45.6%, respectively). In addition, the pharmacokinetics of DSS and Sal B were significantly affected by the content variation of the other major components; the AUC(0-infinity) increased by 45.1% and 52.1%, respectively, the CL dropped by 29.6% and 27.1%, respectively, and the T(1/2) was decreased by 22.0% and 19.6%, respectively. Complex, extensive pharmacokinetic interactions were observed among the major water-soluble constituents in the Danshen injection. The content variation of PAL had the most significant effect on the pharmacokinetic behaviors of other major constituents. Furthermore, the pharmacokinetics of DSS and Sal B were the most susceptible to the content change of other components.
    Acta Pharmacologica Sinica 04/2010; 31(5):638-46. DOI:10.1038/aps.2010.27 · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protocatechuic acid (PA), a structurally typical phenolic acid in danshen, shows anti-angina efficacy. But until now, besides scavenging of oxygen free radicals, the understanding of its anti-angina mechanism has been limited. In our study, based on a novel metabolic route of PA identified in rat heart and its influence on fatty acid oxidation (FAO), we proposed a new mechanism for its anti-angina. In detail, three metabolites, catechol methylated metabolite, acyl-coenzyme (CoA) thioester and glycine conjugation, were identified in rat heart. A novel metabolic pathway was confirmed based on several metabolic systems incubated with heart mitochondria, cytosol, microsomes and homogenate. Results indicated that PA was firstly methylated in microsomes and cytosol, which was regarded as the prerequisite step for further metabolism and could be inhibited by tolcapone, and then the resulting methylated metabolite (vanillic acid) diffused into mitochondria where it was converted into acyl-CoA thioester, in similar with FAO. In addition, part of the acyl-CoA thioester was transformed into glycine conjugation, a step also localized within mitochondria. Furthermore, based on isolated rat heart perfusion, it was found that PA markedly decreased FAO, which was shown by higher residual fatty acid level in perfusate (p<0.05) and lower acy-CoA/CoA ratio in heart (p<0.05). The FAO inhibiting effect of PA could be largely reversed by its methylation inhibitor tolcapone, indicating the effect was closely related with the identified metabolic pathway of PA in heart. The decrease of FAO may switch heart energy substrate preference from fatty acid to glucose, which is beneficial for ischemia heart.
    Biochemical pharmacology 12/2008; 77(6):1096-104. DOI:10.1016/j.bcp.2008.11.029 · 4.65 Impact Factor