Li Li

Capital Medical University, Peping, Beijing, China

Are you Li Li?

Claim your profile

Publications (22)54.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: SIRT1, a mammalian ortholog of yeast silent information regulator 2 (Sir2), is an NAD(+)-dependent protein deacetylase that plays a critical role in the regulation of vascular function. The current study aims to investigate the functional significance of deacetylase activity of SIRT1 in heart. Here we show that the early postnatal hearts expressed the highest level of SIRT1 deacetylase activity compared to adult and aged hearts. We generated transgenic mice with cardiac-specific expression of a dominant-negative form of the human SIRT1 (SIRT1H363Y), which represses endogenous SIRT1 activity. The transgenic mice displayed dilated atrial and ventricular chambers, and died early in the postnatal period. Pathological, echocardiographic and molecular phenotype confirmed the presence of dilated cardiomyopathy. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling analysis revealed a greater abundance of apoptotic nuclei in the hearts of transgenic mice. Furthermore, we show that cardiomyocyte apoptosis caused by suppression of SIRT1 activity is, at least in part, due to increased p53 acetylation and upregulated Bax expression. These results indicate that dominant negative form of SIRT1 (SIRT1H363Y) overexpression in mouse hearts causes cardiomyocyte apoptosis and early-onset heart failure, suggesting a critical role of SIRT1 in preserving normal cardiac development during the early postnatal period.
    Science China. Life sciences. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we investigated the vasodilatory effect of a novel scaffold Rho-kinase inhibitor, DL0805-2, on isolated rat arterial rings including mesenteric, ventral tail, and renal arteries. We also examined the potential mechanisms of its vasodilatory action using mesenteric artery rings.
    Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the effects of pinocembrin on brain ischemia/reperfusion (I/R) injury and the potential involvement of autophagy activity changes in the penumbra area in the mechanisms of pinocembrin activity. Focal cerebral I/R model was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 24 h reperfusion. Pinocembrin was administered intravenously at different doses (1, 3, and 10 mg/kg, respectively) at the onset of reperfusion. Neurological function, brain infarction and brain swelling ratio were evaluated. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and immunohistochemical analysis (Caspase-3) were used to evaluate apoptosis in the penumbra cortex. Two key proteins of autophagy, LC3B and Beclin1, were detected by western blot. The results showed that pinocembrin-treatment could significantly reduce neurological deficit scores, infarct volume, cerebral edema and improve pathological lesion in the I/R rats. Pinocembrin-treatment could also reduce the number of TUNEL-positive and Caspase-3-positive neurons, and upregulate the expression of LC3B and Beclin1 in penumbra area. These results suggested that pinocembrin could protect the brain against I/R injury, and the possible mechanisms might be attributed to inhibition of apoptosis and reversed autophagy activity in penumbra area.
    Molecules (Basel, Switzerland). 01/2014; 19(10):15786-15798.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (AngII) induces the development of vascular hypertrophy and hypertension. We have shown previously that overexpression of class III deacetylase SIRT1 inhibits AngII-induced hypertrophy in vascular smooth muscle cells (VSMCs). However, the direct role of SIRT1 in VSMCs in response to AngII infusion in vivo remains unclear. Here, we found that the expression and activity of SIRT1 in mouse aortas was decreased significantly by AngII infusion. VSMC-specific SIRT1 transgene (SV-Tg) prevented the increase in systolic blood pressure (SBP) caused by AngII infusion without affecting heart function in mice. SIRT1 overexpression alleviated vascular remodeling in mouse thoracic and renal aortas induced by AngII infusion, and significantly inhibited reactive oxygen species (ROS) generation, vascular inflammation, and collagen synthesis in arterial walls. Reduced expression of transforming growth factor-β 1 (TGF-β1) was also observed in the aortas of AngII-infused SV-Tg mice. Moreover, SIRT1 overexpression decreased AngII-increased binding of nuclear factor-κB on its specific binding sites on TGF-β1 promoter. Taken together, these data demonstrate that SIRT1 overexpression in VSMCs reduces SBP and inhibits AngII-induced vascular remodeling in mice. The inhibition of vascular remodeling contributes, at least in part, to the antihypertensive effect of SIRT1. SIRT1 is reduced in aortas of AngII-infused hypertensive mice. SIRT1 VSMC transgene alleviates AngII-increased systolic blood pressure. SIRT1 VSMC transgene attenuates AngII-induced vascular remodeling. VSMC SIRT1 overexpression inhibits remodeling-related pathological changes. VSMC SIRT1 overexpression reduces AngII-induced TGF-β1 expression.
    Journal of Molecular Medicine 12/2013; · 4.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nkx2.5 plays protective roles in cardiac homeostasis and survival in the postnatal hearts. However, the underlying molecular mechanisms that mediate the protective functions of Nkx2.5 remain unknown. Here, we showed that Nkx2.5 was downregulated in response to various stresses and was required for protection against the stress-induced apoptosis of cardiomyocytes. SIRT1, a member of the sirtuin family of proteins, was found to be a direct transcriptional target of Nkx2.5 and was required for the Nkx2.5-mediated protection of cardiomyocytes from doxorubicin (DOX)-induced apoptosis. Moreover, using chromatin immunoprecipitation assays, we found that Nkx2.5 was able to bind to the SIRT1 promoter and that this binding was significantly decreased in DOX-treated mouse hearts. Furthermore, the cardiac-specific overexpression of SIRT1 decreased the DOX-induced apoptosis of cardiomyocytes in SIRT1 transgenic mouse hearts compared with the hearts of their wild-type littermates. These findings demonstrate that SIRT1 acts as a direct transcriptional target of Nkx2.5 that maintains cardiomyocyte homeostasis and survival.
    Archiv für Kreislaufforschung 07/2013; 108(4):364. · 7.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SIRT1 and FasL protein levels were detected by Western blotting in either mouse arteries extract or the whole rat aortic vascular smooth muscle cell (VSMC) lysate. Smooth muscle cell (SMC)-specific human SIRT1 transgenic (Tg) C57BL/6 mice and their littermate wild-type (WT) controls underwent complete carotid artery ligation (ligation groups) or the ligation-excluded operation (sham groups). The carotid arteries were collected 1 day after operation. Reverse transcription-polymerase chain reaction was performed to detect the mRNA levels of SIRT1 and FasL. Luciferase reporter assays were performed to detect the effect of WT-SIRT1, a dominant-negative form of SIRT1 (SIRT1H363Y), and GATA-6 on the promoter activity of FasL. Flow cytometry assay was applied to measure the hypodiploid DNA content of VSMC so as to monitor cellular apoptosis. SIRT1 was expressed in both rat aortic VSMCs and mouse arteries. Forced SIRT1 expression increased FasL expression both in injured mouse carotid arteries 1 day after ligation (P<0.001) and VSMCs treated with serum (P<0.05 at the transcriptional level, P<0.001 at the protein level). No notable apoptosis was observed. Furthermore, transcription factor GATA-6 increased the promoter activity of FasL (P<0.001). The induction of FasL promoter activity by GATA-6 was enhanced by WT-SIRT1 (P<0.001), while SIRT1H363Y significantly relieved the enhancing effect of WT-SIRT1 on GATA-6 (P<0.001). Overexpression of SIRT1 up-regulates FasL expression in both flow-restricted mouse carotid arteries and serum-stimulated VSMCs. The transcription factor GATA-6 participates in the transcriptional regulation of FasL expression by SIRT1.
    Chinese Medical Sciences Journal 06/2013; 28(2):65-71.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pinocembrin (5,7-dihydroxyflavanone) is one of the primary flavonoids in propolis. Angiotensin II (AngII) is a biologically active peptide that induces vasoconstriction via the activation of the angiotensin type 1 receptor (AT1R). In the present study, we investigated the vasorelaxant effect of pinocembrin on AngII-induced vasoconstriction and the molecular mechanism of action. Pinocembrin was observed to inhibit AngII-induced vasoconstriction in rat aortic rings with either intact or denuded endothelium. In endothelium-denuded tissues, pinocembrin (pD́′2pD2′ 4.28 ± 0.15) counteracted the contractions evoked by cumulative concentrations of AngII. In a docking model, pinocembrin showed effective binding at the active site of AT1R. Pinocembrin was shown to inhibit both AngII-induced Ca2+ release from internal stores and Ca2+ influx. Moreover, the increase in the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and myosin light chain 2 (MLC2) induced by AngII was blocked by pinocembrin. These results demonstrate that pinocembrin inhibits AngII-induced rat aortic ring contraction, and these inhibitory effects may be related to the reduction of the AngII-induced increase in [Ca2+]i and ERK1/2 activation via blocking AT1R.
    Biochemical and Biophysical Research Communications 05/2013; 435(1):69–75. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traditional Chinese medicines have been recognized as a new source of anticancer drugs or chemotherapy adjuvant to enhance the efficacy of chemotherapy and to ameliorate the side effects. This study aimed to investigate the antitumor effects of combined Scutellaria barbata D. Don extract (SBE) and 5-FU treatment in vitro and in vivo and the potential mechanisms. SBE was prepared and analyzed by HPLC. Tumor growth inhibition both in vitro and in vivo, cell apoptosis, apoptosis related protein expressions (P53, bid, bax, bcl-2), caspase-3 activities and 5-FU related enzymes were assessed. SBE could significantly synergize the antitumor effects of low dose 5-FU both in vivo and in vitro. SBE could increase the apoptosis inducing effect of low dose 5-FU in both Bel-7402 and HCT-8 cells. Also, caspase-3 activities, P53 and bax expressions were significantly increased, while bid and bcl-2 expressions were significantly decreased in drug combination groups, compared with individual drug treatment groups. Furthermore, SBE could significantly decrease the mRNA levels of dihydropyrimidine dehydrogenase. These results showed that combined treatment with SBE and low dose 5-FU can significantly inhibit the tumor growth both in vitro and in vivo, which might be related with apoptosis and regulations of 5-FU metabolism.
    Phytomedicine: international journal of phytotherapy and phytopharmacology 05/2013; · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AIM: To investigate the effects of pinocembrin on angiotensin II (Ang II)-induced vascular contraction, and to explore its molecular mechanism of actions. METHODS: The isometric vascular tone was measured in rat thoracic aortic rings with denuded endothelium. Phosphorylation level of myosin phosphatase target unit 1 (MYPT1), and protein levels of Rho kinase 1 (ROCK1, ROKβ or p160ROCK) and angiotensin II type-1 receptor (AT1R) were determined by Western blot analysis. RESULTS: Pinocembrin produced a relaxant effect on endothelium-denuded aortic rings contracted by Ang II (100 nmol·L(-1)) in a dose-dependent manner. In endothelium-denuded aortic rings stimulated by Ang II, pretreatment with pinocembrin (25 and 100 μmol·L(-1)) for 20 min significantly attenuated MYPT1 phosphorylation and ROCK1 protein levels. Meanwhile, the protein level of AT1R in response to Ang II was not affected by pinocembrin in rat aortic rings. CONCLUSION: These findings indicate that pinocembrin inhibits vasoconstriction induced by Ang II in rat endothelium-denuded aortic rings, and the mechanism at least in part, is due to the blockade of the RhoA/ROCK pathway.
    Chinese journal of natural medicines. 05/2013; 11(3):258-263.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salvianolic acids, including salvianolic acid A (SAA) and salvianolic acid B (SAB), are the main water-soluble bioactive compounds isolated from the Chinese medicinal herb Danshen and have been shown to exert in vitro and in vivo cardiovascular protection. Recent studies suggest that epoxyeicosatrienoic acids (EETs), the primary cytochrome P450 2J (CYP2J) epoxygenase metabolites of arachidonic acid, are involved in the progression of ischemic injury in diverse organs. Here, we investigated the relation between the protective effects of salvianolic acids and EETs/sEH as well as MAPK signaling pathway. In the present study, the rat acute myocardial infarction (AMI) model was established by the left anterior descending coronary artery occlusion. Our results showed that salvianolic acids significantly reduced ST-segment elevation and serum levels of CK-MB, LDH, and ALT in AMI rats, and significantly attenuated the caspase 3 expression and reduced the ratio of Bax/Bcl-2. ELISA measurement showed that salvianolic acids significantly increased the 14,15-EET levels in blood and heart, and attenuated hydrolase activity of sEH in heart of AMI rat. Western blotting analysis suggested that salvianolic acids significantly attenuated the phosphorylation of JNK and p38, and increased phosphorylation of ERK in heart. In conclusion, these results indicate that EETs/sEH and MAPK signaling pathways are important processes in cardioprotection of salvianolic acids.
    Acta Pharmaceutica Sinica B. 02/2013; 3(1):25–31.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective Protecting the heart from myocardial ischemia and reperfusion (I/R) damage is the focus of intense research. Coptisine is an isoquinoline alkaloid isolated from Coptidis Rhizoma. The present study investigated the potential effect of coptisine on myocardial I/R damage in rats and the underlying mechanisms. Methods and results Electrocardiogram examination showed that the administration of coptisine 10 min before ischemia significantly decreased I/R-induced arrhythmia after 30 min ischemia followed by 3 h reperfusion. The release of cardiac markers was also limited. Echocardiography was performed before ischemia and 24 h post-I/R, separately. The M-mode records showed that the reductions of ejection fraction (EF) and fractional shortening (FS) were attenuated in coptisine-treated rats compared with the I/R rats. Similar results were obtained with Evans Blue/triphenyl tetrazolium chloride (TTC) staining, in which coptisine notably reduced infarct size. Moreover, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated coptisine suppressed myocardial apoptosis, which may be related to the upregulation of Bcl-2 protein and inhibition of caspase-3 activation. Coptisine treatment also attenuated the proinflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in heart tissue. Additionally, Western blot and immunohistochemical analysis showed that coptisine markedly reduced Rho, Rho-kinase 1 (ROCK1), and ROCK2 expression and attenuated the phosphorylation of myosin phosphatase targeting subunit-1, a downstream target of ROCK. Conclusions Coptisine exerts pronounced cardioprotection in rats subjected to myocardial I/R likely through suppressing myocardial apoptosis and inflammation by inhibiting the Rho/ROCK pathway.
    Atherosclerosis 01/2013; 231(2):384–391. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal vascular smooth muscle cell (VSMC) proliferation and migration contribute to the pathogenesis of vascular diseases including atherosclerosis and restenosis. Brazilin isolated from the heartwood of Caesalpinia sappan L. has been reported to exhibit various biological activities, such as anti-platelet aggregation, anti-inflammation, vasorelaxation and pro-apoptosis. However, the functional effects of Brazilin on VSMCs remain unexplored. The present study investigated the potential effects of Brazilin on platelet-derived growth factor (PDGF)-BB induced VSMC proliferation and migration as well as the underlying mechanism of action. VSMC proliferation and migration were measured by Crystal Violet Staining, wound-healing and Boyden chamber assays, respectively. Cell cycle was analyzed by flow cytometry. Enzymatic action of matrix metalloproteinase-9 (MMP-9) was carried out by gelatin zymography. Expression of adhesion molecules, cell cycle regulatory proteins, the phosphorylated levels of PDGF receptor β (PDGF-Rβ), Src, extracellular signal regulated kinase (ERK) and Akt were tested by immunoblotting. The present study demonstrated that pretreatment with Brazilin dose-dependently inhibited PDGF-BB stimulated VSMC proliferation and migration, which were associated with a cell-cycle arrest at G0/G1 phase, a reduction in the adhesion molecule expression and MMP-9 activation in VSMCs. Furthermore, the increase in PDGF-Rβ, Src, ERK1/2 and Akt phosphorylation induced by PDGF-BB were suppressed by Brazilin. These findings indicate that Brazilin inhibits PDGF-BB induced VSMC proliferation and migration, and the inhibitory effects of Brazilin may be associated with the blockade of PDGF-Rβ - ERK1/2 and Akt signaling pathways. In conclusion, the present study implicates that Brazilin may be useful as an anti-proliferative agent for the treatment of vascular diseases.
    The American Journal of Chinese Medicine 01/2013; 41(6):1283-1296. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tropane alkaloids (TA) including hyoscyamine, anisodamine, scopolamine and anisodine, are used medicinally as anticholinergic agents with increasing market demand, so it is very important to improve TA production by metabolic engineering strategy. Here, we report the simultaneous introduction of genes encoding the branch-controlling enzyme tropinone reductase I (TRI, EU424321) and the downstream rate-limiting enzyme hyoscyamine-6β-hydroxylase (H6H, EF187826) involved in TA biosynthesis into Anisodus acutangulus hairy roots by Agrobacterium-mediated gene transfer technology. Transgenic hairy root lines expressing both TRI and H6H (TH lines) produced significantly higher (P < 0.05) levels of TA compared with the control and single gene transformed lines (T or H lines). The best double gene transformed line (TH53) produced 4.293 mg g(-1) TA, which was about 4.49-fold higher than that of the control lines (0.96 mg g(-1)). As far as it is known, this is the first report on simultaneous introduction of TRI and H6H genes into TA-producing plant by biotechnological approaches. Besides, the content of anisodine was also greatly improved in A. acutangulus by over-expression of AaTRI and AaH6H genes. The average content of anisodine in TH lines was 0.984 mg g(-1) dw, about 18.57-fold of BC lines (0.053 mg g(-1) dw). This is the first time that this phenomenon has been found in TA-producing plants.
    Molecular BioSystems 09/2012; 8(11):2883-90. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular smooth muscle cell (VSMC) proliferation and migration are crucial events involved in the pathophysiology of vascular diseases. Sirtuin 1 (SIRT1), a class III histone deacetylase (HDAC), has been reported to have the function of antiatherosclerosis, but its role in neointima formation remains unknown. The present study was designed to investigate the role of SIRT1 in the regulation of neointima formation and to elucidate the underlying mechanisms. A decrease in SIRT1 expression was observed following carotid artery ligation. smooth muscle cell (SMC)-specific human SIRT1 transgenic (Tg) mice were generated. SIRT1 overexpression substantially inhibited neointima formation after carotid artery ligation or carotid artery wire injury. In the intima of injured carotid arteries, VSMC proliferation (proliferating cell nuclear antigen (PCNA)-positive cells) was significantly reduced. SIRT1 overexpression markedly inhibited VSMC proliferation and migration and induced cell cycle arrest at G1/S transition in vitro. Accordingly, SIRT1 overexpression decreased the induction of cyclin D1 and matrix metalloproteinase-9 (MMP-9) expression by treatment with serum and TNF-α, respectively, whereas RNAi knockdown of SIRT1 resulted in the opposite effect. Decreased cyclin D1 and MMP-9 expression/activity were also observed in injured carotid arteries from SMC-SIRT1 Tg mice. Furthermore, 2 targets of SIRT1, c-Fos and c-Jun, were involved in the downregulation of cyclin D1 and MMP-9 expression. Our findings demonstrate the inhibitory effect of SIRT1 on the VSMC proliferation and migration that underlie neointima formation and implicate SIRT1 as a potential target for intervention in vascular diseases.
    Circulation Research 05/2011; 108(10):1180-9. · 11.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (Ang II) stimulates vascular smooth muscle cell (VSMC) hypertrophy as a critical event in the development of vascular diseases such as atherosclerosis. Sirtuin (SIRT) 1, a nicotinamide adenine dinucleotide dependent deacetylase, has been demonstrated to exert protective effects in atherosclerosis by promoting endothelium-dependent vascular relaxation and reducing macrophage foam cell formation, but its role in VSMC hypertrophy remains unknown. In this study, we tried to investigate the effect of SIRT1 on Ang II-induced VSMC hypertrophy. Results showed that adenoviral-mediated over-expression of SIRT1 significantly inhibited Ang II-induced VSMC hypertrophy, while knockdown of SIRT1 by RNAi resulted in an increased [(3)H]-leucine incorporation of VSMC. Accordingly, nicotinamide adenine dinucleotide phosphate oxidase 1 (Nox1) expression induced by Ang II was inhibited by SIRT1 in VSMCs. SIRT1 activator resveratrol decreased, whereas endogenous SIRT1 inhibitor nicotinamide increased Nox1 expression in A7r5 VSMCs. Furthermore, transcription factor GATA-6 was involved in the down-regulation of Nox1 expression by SIRT1. These results provide new insight into SIRT1's anti-atherogenic properties by suppressing Ang II-induced VSMC hypertrophy.
    Acta Biochimica et Biophysica Sinica 02/2011; 43(2):103-9. · 1.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The proinflammatory cytokine TNF-alpha plays an important role in stimulating inflammatory responses of vascular smooth muscle cells (VSMCs). The anti-inflammatory function of Sirtuin 1 (SIRT1), a NAD-dependent class III histone/protein deacetylase, has been well documented, but how SIRT1 is regulated under inflammatory conditions is largely unknown. In the present research, we showed that levels of SIRT1 mRNA and protein expression increased in TNF-alpha-treated VSMCs. Overexpression of the p65/RelA subunit of NF-kappaB, a TNF-alpha-activated inflammatory transcription factor, in A7r5 cells, upregulated SIRT1 mRNA and protein expression as well as SIRT1 promoter activity, while knockdown of endogenous p65/RelA expression by RNAi not only led to a decrease in SIRT1's basal protein expression and promoter activity, but almost abolished the TNF-alpha-induced elevation of SIRT1 protein expression and SIRT1 promoter activity. Furthermore, using promoter deletion analysis and chromatin immunoprecipitation assays, we found that p65/RelA bound to the SIRT1 promoter at a consensus NF-kappaB binding site. Our study indicates that p65/RelA mediates the TNF-alpha-induced elevated expression of SIRT1 in VSMCs, shedding new light on the regulation of SIRT1 under inflammatory conditions.
    Biochemical and Biophysical Research Communications 07/2010; 397(3):569-75. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tropane alkaloids are used medicinally as anticholinergic agents with increasing market demand, so the improvement and production of active components from medicinal plants using molecular biotechnology show great potential for applications that should benefit human healthcare. Two tropinone reductases constitute a branching point in the biosynthesis of tropane alkaloids. In the present paper, we report for the first time the cloning and characterization of two fulllength cDNAs encoding TRI (tropinone reductase I) (GenBank accession number EU424321) and TRII (tropinone reductase II) (GenBank(R) accession number EU424322) from the solanaceous plant Anisodus acutangulus by rapid amplification of cDNA ends. Sequence comparison indicated that AaTRI (A. acutangulus TRI) and AaTRII (A. acutangulus TRII) had high homology with other tropinone reductases from Hyoscyamus niger, Datura stramonium etc., but AaTRI and AaTRII showed identity of only 60.8%. Phylogenetic-tree analysis showed that AaTRI and AaTRII belong to different clusters and have the closest relationship with H. niger TRI and TRII respectively. Expression-pattern analysis showed that AaTRI and AaTRII were expressed in all tissues tested, including root, stem and leaf, but the transcript level of AaTRI was much lower than AaTRII. Expression of AaTRI and AaTRII could be enhanced by methyl jasmonate, with a weak effect for AaTRI and a strong effect for AaTRII. AaTRI-transformed hairy-root lines were accompanied by a mean 1.87-fold higher level of hyoscyamine and a mean 8-fold higher level of scopolamine compared with control roots, indicating that AaTRI is a promising target for genetic engineering to increase tropane alkaloid in A. acutangulus.
    Biotechnology and Applied Biochemistry 09/2009; 54(3):177-86. · 1.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new full-length cDNA encoding strictosidine synthase (designated as OjSTR, GenBank Accession No. 1087598), which catalyzes a committed step in camptothecin biosynthetic pathway, was isolated from young leaves of Ophiorrhiza japonica for the first time. OjSTR was 1,258 bp and contained a 1,062 bp open reading frame encoding a deduced protein of 353 amino acid residues. Sequence analyses showed that OjSTR had high homology with other STRs from some TIA-producing plants. Phylogenetic tree analysis showed that OjSTR had closest relationship with STR from O. pumila. Tissue expression pattern analysis revealed that OjSTR constitutively expressed in all the tested tissues at different levels, which was high in flower, moderate in leaf and root, low in stem. Expression profiles under plant defense signals such as methyl jasmonate and salicylic acid were investigated, and the results revealed that expression of OjSTR was all induced, implying that OjSTR was high elicitor responsive.
    Molecular Biology Reports 12/2008; 36(7):1845-52. · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Putrescine N-methyltransferase (PMT; EC. 2.5.1.53) catalyzes the S-adenosylmethionine-dependent N-methylation of putrescine to form N-methylputrescine, which was the first committed step in tropane alkaloid biosynthetic pathway. Two PMT cDNA clones [Anisodus acutangulus putrescine N-methyltransferase 1 (AaPMT1), GenBank Accession No. EU670745; AaPMT2, GenBank Accession No. EU670746] were obtained and characterized together from Anisodus acutangulus for the first time. The full-length cDNA of AaPMT1 was 1322 bp containing a 1014-bp open reading frame (ORF) encoding a polypeptide of 338 amino acids and AaPMT2 was 1219 bp containing a 1041-bp ORF encoding a polypeptide of 347 amino acids. Comparison of the deduced amino acid sequences of AaPMTs with those from tropane alkaloid-producing plants revealed that AaPMTs had high similarity with other plants PMT. Phylogenetic tree analysis displayed that AaPMT1 showed extensive homology with PMT from Anisodus tanguticus, and AaPMT2 had closer relationship with PMT2 from Atropa belladonna, which indicated PMTs belonged to PMT superfamily. Southern hybridization analysis of the genomic DNA revealed the occurrence of two PMT copies in A. acutangulus genome. Tissue expression pattern analysis revealed that AaPMT1 expressed strongly in roots, weakly in steams and leaves, besides, AaPMT2 presented a similar weaker trend. It indicated that AaPMTs were constitutive expression genes, which were the first reported tissue-independent PMT genes compared with other known PMT genes. AaPMT1 expression was upregulated by methyl jasmonate (MeJA) in all tissues, reaching the highest level after 24 h of the treatment. AaPMT2 also exhibited a very similar trend, whereas the expression was much weaker than that in AaPMT1. So, AaPMTs were considered to be MeJA elicitor-responsive genes and could be effectively elicited at least at the transcriptional level. The work would provide useful knowledge for tropane alkaloids biosynthesis and metabolic engineering to increase the production.
    Physiologia Plantarum 12/2008; 135(2):121-9. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new full-length cDNA encoding hyoscyamine 6beta-hydroxylase (designated as aah6h, GenBank Accession No. EF187826), which catalyzes the last committed step in the scopolamine biosynthetic pathway, was isolated from young roots of Anisodus acutangulus by rapid amplification of cDNA ends (RACE) for the first time. The full-length cDNA of aah6h was 1380 bp and contained a 1035 bp open reading frame (ORF) encoding a deduced protein of 344 amino acid residues. The deduced protein had an isoelectric point (pI) of 5.09 and a calculated molecular mass of about 38.7 kDa. Sequence analyses showed that AaH6H had high homology with other H6Hs isolated from some scopolamine-producing plants such as Hyoscyamus niger, Datura metel and Atropa belladonna etc. Bioinformatics analyses results indicated AaH6H belongs to 2-oxoglutarate-dependent dioxygenase superfamily. Phylogenetic tree analysis showed that AaH6H had closest relationship with H6H from A. tanguticus. Southern hybridization analysis of the genomic DNA revealed that aah6h belonged to a multi-copy gene family. Tissue expression pattern analysis firstly founded that aah6h expressed in all the tested tissues including roots, stems and leaves and indicated that aah6h was a constitutive-expression gene, which was the first reported tissue-independent h6h gene compared to other known h6h genes.
    Journal of biochemistry and molecular biology 10/2007; 40(5):715-22. · 2.02 Impact Factor