Lula Smith

University of Texas Southwestern Medical Center, Dallas, TX, United States

Are you Lula Smith?

Claim your profile

Publications (3)17.6 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Short and long myosin light chain kinases (MLCKs) are Ca(2+)/calmodulin-dependent enzymes that phosphorylate the regulatory light chain of myosin II in thick filaments but bind with high affinity to actin thin filaments. Three repeats of a motif made up of the sequence DFRXXL at the N terminus of short MLCK are necessary for actin binding (Smith, L., Su, X., Lin, P., Zhi, G., and Stull, J. T. (1999) J. Biol. Chem. 274, 29433-29438). The long MLCK has two additional DFRXXL motifs and six Ig-like modules in an N-terminal extension, which may confer unique binding properties for cellular localization. Two peptides containing either five or three DFRXXL motifs bound to F-actin and smooth muscle myofilaments with maximal binding stoichiometries consistent with each motif binding to an actin monomer in the filaments. Both peptides cross-linked F-actin and bound to stress fibers in cells. Long MLCK with an internal deletion of the five DFRXXL motifs and the unique NH(2)-terminal fragment containing six Ig-like motifs showed weak binding. Cell fractionation and extractions with MgCl(2) indicate that the long MLCK has a greater affinity for actin-containing filaments than short MLCK in vitro and in vivo. Whereas DFRXXL motifs are necessary and sufficient for short MLCK binding to actin-containing filaments, the DFRXXL motifs and the N-terminal extension of long MLCK confer high affinity binding to stress fibers in cells.
    Journal of Biological Chemistry 10/2002; 277(38):35597-604. DOI:10.1074/jbc.M206483200 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ca2+-calmodulin-dependent phosphorylation of myosin regulatory light chains by the catalytic COOH-terminal half of myosin light chain kinase (MLCK) activates myosin II in smooth and nonmuscle cells. In addition, MLCK binds to thin filaments in situ and F-actin in vitro via a specific repeat motif in its NH2 terminus at a stoichiometry of one MLCK per three actin monomers. We have investigated the structural basis of MLCK-actin interactions by negative staining and helical reconstruction. F-actin was decorated with a peptide containing the NH2-terminal 147 residues of MLCK (MLCK-147) that binds to F-actin with high affinity. MLCK-147 caused formation of F-actin rafts, and single filaments within rafts were used for structural analysis. Three-dimensional reconstructions showed MLCK density on the extreme periphery of subdomain-1 of each actin monomer forming a bridge to the periphery of subdomain-4 of the azimuthally adjacent actin. Fitting the reconstruction to the atomic model of F-actin revealed interaction of MLCK-147 close to the COOH terminus of the first actin and near residues 228-232 of the second. This unique location enables MLCK to bind to actin without interfering with the binding of any other key actin-binding proteins, including myosin, tropomyosin, caldesmon, and calponin.
    The Journal of Cell Biology 09/2001; 154(3):611-7. DOI:10.1083/jcb.200105079 · 9.69 Impact Factor
  • Source
    Lula Smith · James T Stull
    [Show abstract] [Hide abstract]
    ABSTRACT: Smooth muscle myosin light chain kinase (MLCK) plays important roles in contractile-motile processes of a variety of cells. Three DFRxxL motifs at the kinase N-terminus (residues 2-63) are critical for high-affinity binding to actin-containing filaments [Smith et al. (1999) J. Biol. Chem. 274, 29433-29438]. A GST fusion protein containing residues 1-75 of MLCK (GST75-MLCK) bound maximally to both smooth muscle myofilaments and F-actin at 0.28 and 0.31 mol GST75-MLCK/mol actin with respective K(D) values of 0.1 microM and 0.8 microM. High-affinity binding of MLCK to actin-containing filaments may be due to each DFRxxL motif binding to one actin monomer in filaments.
    FEBS Letters 10/2000; 480(2-3):298-300. DOI:10.1016/S0014-5793(00)01931-1 · 3.34 Impact Factor