Karen Duff

Columbia University, New York, New York, United States

Are you Karen Duff?

Claim your profile

Publications (161)1179.87 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: 25-Hydroxyvitamin D (25(OH)D) deficits have been associated with schizophrenia susceptibility and supplementation has been recommended for those at-risk. Although the mechanism by which a deficit confers risk is unknown, vitamin D is a potent transcriptional modulator and can regulate proline dehydrogenase (PRODH) expression. PRODH maps to chromosome 22q11, a region conferring the highest known genetic risk of schizophrenia, and encodes proline oxidase, which catalyzes proline catabolism. l-Proline is a neuromodulator at glutamatergic synapses, and peripheral hyperprolinemia has been associated with decreased IQ, cognitive impairment, schizoaffective disorder, and schizophrenia. We investigated the relationship between 25(OH)D and schizophrenia, comparing fasting plasma 25(OH)D in 64 patients and 90 matched controls. We then tested for a mediating effect of hyperprolinemia on the association between 25(OH)D and schizophrenia. 25(OH)D levels were significantly lower in patients, and 25(OH)D insufficiency associated with schizophrenia (OR 2.1, adjusted p = 0.044, 95% CI: 1.02–4.46). Moreover, 25(OH)D insufficient subjects had three times greater odds of hyperprolinemia than those with optimal levels (p = 0.035, 95% CI: 1.08–8.91), and formal testing established that hyperprolinemia is a significantly mediating phenotype that may explain over a third of the effect of 25(OH)D insufficiency on schizophrenia risk. This study presents a mechanism by which 25(OH)D insufficiency confers risk of schizophrenia; via proline elevation due to reduced PRODH expression, and a concomitant dysregulation of neurotransmission. Although definitive causality cannot be confirmed, these findings strongly support vitamin D supplementation in patients, particularly for those with elevated proline, who may represent a large subgroup of the schizophrenia population.
    Schizophrenia Research 06/2014; DOI:10.1016/j.schres.2014.03.017 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The entorhinal cortex has been implicated in the early stages of Alzheimer's disease, which is characterized by changes in the tau protein and in the cleaved fragments of the amyloid precursor protein (APP). We used a high-resolution functional magnetic resonance imaging (fMRI) variant that can map metabolic defects in patients and mouse models to address basic questions about entorhinal cortex pathophysiology. The entorhinal cortex is divided into functionally distinct regions, the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC), and we exploited the high-resolution capabilities of the fMRI variant to ask whether either of them was affected in patients with preclinical Alzheimer's disease. Next, we imaged three mouse models of disease to clarify how tau and APP relate to entorhinal cortex dysfunction and to determine whether the entorhinal cortex can act as a source of dysfunction observed in other cortical areas. We found that the LEC was affected in preclinical disease, that LEC dysfunction could spread to the parietal cortex during preclinical disease and that APP expression potentiated tau toxicity in driving LEC dysfunction, thereby helping to explain regional vulnerability in the disease.
    Nature Neuroscience 12/2013; DOI:10.1038/nn.3606 · 14.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microtubule-based axonal transport is believed to become globally disrupted in Alzheimer's disease in part due to alterations of tau expression or phosphorylation. We previously showed that axonal transport rates along retinal ganglion axons are unaffected by deletion of normal mouse tau or by overexpression of wild-type human tau. Here, we report that htau mice expressing 3-fold higher levels of human tau in the absence of mouse tau also display normal fast and slow transport kinetics despite the presence of abnormally hyperphosphorylated tau in some neurons. In addition, markers of slow transport (neurofilament light subunit) and fast transport (snap25) exhibit normal distributions along optic axons of these mice. These studies demonstrate that human tau expressed, even when associated with a limited degree of tau pathology, do not necessarily impair general axonal transport function in vivo.
    Journal of Alzheimer's disease: JAD 07/2013; 37(3). DOI:10.3233/JAD-130671 · 3.61 Impact Factor
  • Alzheimer's and Dementia 07/2013; 9(4):P715-P716. DOI:10.1016/j.jalz.2013.05.1422 · 17.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most age-associated neurodegenerative diseases involve the aggregation of specific proteins within the nervous system. In Alzheimer disease, the insidious pathogenic process begins many years before the symptoms emerge, and the lesions that characterize the disease—senile plaques and neurofibrillary tangles—ramify systematically through the brain. We review evidence that the -amyloid and tau proteins, which aggregate to form senile plaques and neurofibrillary tangles, respectively, are induced to misfold and self-assemble by a process of templated conformational change that amplifies a toxic species. Recent data also indicate that the spread of these lesions from one site to another is mediated by the cellular uptake, transport, and release of endogenous seeds formed by the cognate proteins. This simple pathogenic principle suggests that the formation, trafficking, and metabolism of pathogenic protein seeds are promising therapeutic targets for Alzheimer disease and other neurodegenerative disorders.
    03/2013; 70(3):304-10. DOI:10.1001/jamaneurol.2013.1453
  • [Show abstract] [Hide abstract]
    ABSTRACT: The accumulation of tau into aggregates is associated with key pathological events in Frontotemporal Lobe Degeneration (FTD-tau) and Alzheimers disease (AD).Recent data have shown that misfolded tau can be internalized by cells in vitro (1-3) and propagate pathology in vivo (4,5). Here we show that recombinant tau misfolds into low molecular weight (LMW) aggregates prior to assembly into fibrils, and both extracellular LMW tau aggregates and short fibrils, but not monomers, long fibrils, nor long filaments purified from brain extract are taken up by neurons. Remarkably, misfolded tau can be internalized at the somatodendritic compartment, or the axon terminals and it can be transported anterogradely, retrogradely, and can enhance tauopathy in vivo. The internalized tau aggregates co-localize with dextran, a bulk-endocytosis marker, and with the endolysosomal compartments. Our findings demonstrate that exogenous tau can be taken up by cells, uptake depends on both the conformation and size of the tau aggregates and once inside cells, tau can be transported. These data provide support for observations that tauopathy can spread trans-synaptically in vivo, via cell-to-cell transfer.
    Journal of Biological Chemistry 11/2012; DOI:10.1074/jbc.M112.394528 · 4.60 Impact Factor
  • Jessica Wu, Mathieu Herman, Karen Duff
    Alzheimer's and Dementia 07/2012; 8(4):P97. DOI:10.1016/j.jalz.2012.05.241 · 17.47 Impact Factor
  • Natura Myeku, W. Haung Yu, Karen Duff
    Alzheimer's and Dementia 07/2012; 8(4):P636-P637. DOI:10.1016/j.jalz.2012.05.1697 · 17.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress induces aggregation of RNA-binding proteins to form inclusions, termed stress granules (SGs). Recent evidence suggests that SG proteins also colocalize with neuropathological structures, but whether this occurs in Alzheimer's disease is unknown. We examined the relationship between SG proteins and neuropathology in brain tissue from P301L Tau transgenic mice, as well as in cases of Alzheimer's disease and FTDP-17. The pattern of SG pathology differs dramatically based on the RNA-binding protein examined. SGs positive for T-cell intracellular antigen-1 (TIA-1) or tristetraprolin (TTP) initially do not colocalize with tau pathology, but then merge with tau inclusions as disease severity increases. In contrast, G3BP (ras GAP-binding protein) identifies a novel type of molecular pathology that shows increasing accumulation in neurons with increasing disease severity, but often is not associated with classic markers of tau pathology. TIA-1 and TTP both bind phospho-tau, and TIA-1 overexpression induces formation of inclusions containing phospho-tau. These data suggest that SG formation might stimulate tau pathophysiology. Thus, study of RNA-binding proteins and SG biology highlights novel pathways interacting with the pathophysiology of AD, providing potentially new avenues for identifying diseased neurons and potentially novel mechanisms regulating tau biology.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 06/2012; 32(24):8270-83. DOI:10.1523/JNEUROSCI.1592-12.2012 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4):445-544. · 11.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4):445. · 11.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than 30 neurodegenerative diseases including Alzheimer disease (AD), frontotemporal lobe dementia (FTD), and some forms of Parkinson disease (PD) are characterized by the accumulation of an aggregated form of the microtubule-binding protein tau in neurites and as intracellular lesions called neurofibrillary tangles. Diseases with abnormal tau as part of the pathology are collectively known as the tauopathies. Methylthioninium chloride, also known as methylene blue (MB), has been shown to reduce tau levels in vitro and in vivo and several different mechanisms of action have been proposed. Herein we demonstrate that autophagy is a novel mechanism by which MB can reduce tau levels. Incubation with nanomolar concentrations of MB was sufficient to significantly reduce levels of tau both in organotypic brain slice cultures from a mouse model of FTD, and in cell models. Concomitantly, MB treatment altered the levels of LC3-II, cathepsin D, BECN1, and p62 suggesting that it was a potent inducer of autophagy. Further analysis of the signaling pathways induced by MB suggested a mode of action similar to rapamycin. Results were recapitulated in a transgenic mouse model of tauopathy administered MB orally at three different doses for two weeks. These data support the use of this drug as a therapeutic agent in neurodegenerative diseases.
    Autophagy 04/2012; 8(4):609-22. DOI:10.4161/auto.19048 · 11.42 Impact Factor
  • Source
    Autophagy 04/2012; 8(4):1-100. DOI:10.4161/auto.19496 · 11.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process);5,6 thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4). · 11.42 Impact Factor
  • Source
    Autophagy 04/2012; 4454(8):445-544. · 11.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tauopathy in the brain of patients with Alzheimer's disease starts in the entorhinal cortex (EC) and spreads anatomically in a defined pattern. To test whether pathology initiating in the EC spreads through the brain along synaptically connected circuits, we have generated a transgenic mouse model that differentially expresses pathological human tau in the EC and we have examined the distribution of tau pathology at different timepoints. In relatively young mice (10-11 months old), human tau was present in some cell bodies, but it was mostly observed in axons within the superficial layers of the medial and lateral EC, and at the terminal zones of the perforant pathway. In old mice (>22 months old), intense human tau immunoreactivity was readily detected not only in neurons in the superficial layers of the EC, but also in the subiculum, a substantial number of hippocampal pyramidal neurons especially in CA1, and in dentate gyrus granule cells. Scattered immunoreactive neurons were also seen in the deeper layers of the EC and in perirhinal and secondary somatosensory cortex. Immunoreactivity with the conformation-specific tau antibody MC1 correlated with the accumulation of argyrophilic material seen in old, but not young mice. In old mice, axonal human tau immunoreactivity, especially at the endzones of the perforant pathway, was greatly reduced. Relocalization of tau from axons to somatodendritic compartments and propagation of tauopathy to regions outside of the EC correlated with mature tangle formation in neurons in the EC as revealed by thioflavin-S staining. Our data demonstrate propagation of pathology from the EC and support a trans-synaptic mechanism of spread along anatomically connected networks, between connected and vulnerable neurons. In general, the mouse recapitulates the tauopathy that defines the early stages of AD and provides a model for testing mechanisms and functional outcomes associated with disease progression.
    PLoS ONE 02/2012; 7(2):e31302. DOI:10.1371/journal.pone.0031302 · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipids are key regulators of brain function and have been increasingly implicated in neurodegenerative disorders including Alzheimer disease (AD). Here, a systems-based approach was employed to determine the lipidome of brain tissues affected by AD. Specifically, we used liquid chromatography-mass spectrometry to profile extracts from the prefrontal cortex, entorhinal cortex, and cerebellum of late-onset AD (LOAD) patients, as well as the forebrain of three transgenic familial AD (FAD) mouse models. Although the cerebellum lacked major alterations in lipid composition, we found an elevation of a signaling pool of diacylglycerol as well as sphingolipids in the prefrontal cortex of AD patients. Furthermore, the diseased entorhinal cortex showed specific enrichment of lysobisphosphatidic acid, sphingomyelin, the ganglioside GM3, and cholesterol esters, all of which suggest common pathogenic mechanisms associated with endolysosomal storage disorders. Importantly, a significant increase in cholesterol esters and GM3 was recapitulated in the transgenic FAD models, suggesting that these mice are relevant tools to study aberrant lipid metabolism of endolysosomal dysfunction associated with AD. Finally, genetic ablation of phospholipase D2, which rescues the synaptic and behavioral deficits of an FAD mouse model, fully normalizes GM3 levels. These data thus unmask a cross-talk between the metabolism of phosphatidic acid, the product of phospholipase D2, and gangliosides, and point to a central role of ganglioside anomalies in AD pathogenesis. Overall, our study highlights the hypothesis generating potential of lipidomics and identifies novel region-specific lipid anomalies potentially linked to AD pathogenesis.
    Journal of Biological Chemistry 01/2012; 287(4):2678-2688. · 4.60 Impact Factor
  • Source
    Autophagy 01/2012; 4454(8):445-544. · 11.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipids are key regulators of brain function and have been increasingly implicated in neurodegenerative disorders including Alzheimer disease (AD). Here, a systems-based approach was employed to determine the lipidome of brain tissues affected by AD. Specifically, we used liquid chromatography-mass spectrometry to profile extracts from the prefrontal cortex, entorhinal cortex, and cerebellum of late-onset AD (LOAD) patients, as well as the forebrain of three transgenic familial AD (FAD) mouse models. Although the cerebellum lacked major alterations in lipid composition, we found an elevation of a signaling pool of diacylglycerol as well as sphingolipids in the prefrontal cortex of AD patients. Furthermore, the diseased entorhinal cortex showed specific enrichment of lysobisphosphatidic acid, sphingomyelin, the ganglioside GM3, and cholesterol esters, all of which suggest common pathogenic mechanisms associated with endolysosomal storage disorders. Importantly, a significant increase in cholesterol esters and GM3 was recapitulated in the transgenic FAD models, suggesting that these mice are relevant tools to study aberrant lipid metabolism of endolysosomal dysfunction associated with AD. Finally, genetic ablation of phospholipase D(2), which rescues the synaptic and behavioral deficits of an FAD mouse model, fully normalizes GM3 levels. These data thus unmask a cross-talk between the metabolism of phosphatidic acid, the product of phospholipase D(2), and gangliosides, and point to a central role of ganglioside anomalies in AD pathogenesis. Overall, our study highlights the hypothesis generating potential of lipidomics and identifies novel region-specific lipid anomalies potentially linked to AD pathogenesis.
    Journal of Biological Chemistry 12/2011; 287(4):2678-88. DOI:10.1074/jbc.M111.274142 · 4.60 Impact Factor

Publication Stats

12k Citations
1,179.87 Total Impact Points

Institutions

  • 2008–2014
    • Columbia University
      • • Department of Pathology & Cell Biology
      • • Department of Psychiatry
      New York, New York, United States
  • 2012
    • University of Michigan
      • Life Sciences Institute
      Ann Arbor, MI, United States
  • 2009–2012
    • New York State Psychiatric Institute
      New York, New York, United States
  • 1993–2009
    • University of South Florida
      Tampa, Florida, United States
  • 1999–2007
    • Nathan Kline Institute
      Orangeburg, New York, United States
  • 2004–2005
    • Albert Einstein College of Medicine
      • Department of Pathology
      New York City, New York, United States
    • NYU Langone Medical Center
      New York, New York, United States
    • McLean Hospital
      • Molecular Neurobiology Laboratory
      Cambridge, MA, United States
    • McGill University
      • Department of Pharmacology and Therapeutics
      Montréal, Quebec, Canada
  • 1970–2005
    • CUNY Graduate Center
      New York, New York, United States
  • 1998
    • Mayo Foundation for Medical Education and Research
      Rochester, Michigan, United States
  • 1994
    • University of Essex
      Colchester, England, United Kingdom