Julie Sollier

FIRC Institute of Molecular Oncology Foundation, Milano, Lombardy, Italy

Are you Julie Sollier?

Claim your profile

Publications (7)62.91 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombination is important for DNA repair, but it can also contribute to genome rearrangements. RecQ helicases, including yeast Sgs1 and human BLM, safeguard genome integrity through their functions in DNA recombination. Sgs1 prevents the accumulation of Rad51-dependent sister chromatid junctions at damaged replication forks, and its functionality seems to be regulated by Ubc9- and Mms21-dependent sumoylation. We show that mutations in Smc5-6 and Esc2 also lead to an accumulation of recombinogenic structures at damaged replication forks. Because Smc5-6 is sumoylated in an Mms21-dependent manner, this finding suggests that Smc5-6 may be a crucial target of Mms21 implicated in this process. Our data reveal that Smc5-6 and Esc2 are required to tolerate DNA damage and that their functionality is critical in genotoxic conditions in the absence of Sgs1. As reported previously for Sgs1 and Smc5-6, we find that Esc2 physically interacts with Ubc9 and SUMO. This interaction is correlated with the ability of Esc2 to promote DNA damage tolerance. Collectively, these data suggest that Esc2 and Smc5-6 act in concert with Sgs1 to prevent the accumulation of recombinogenic structures at damaged replication forks, likely by integrating sumoylation activities to regulate the repair pathways in response to damaged DNA.
    Molecular biology of the cell 02/2009; 20(6):1671-82. · 5.98 Impact Factor
  • Ejc Supplements - EJC SUPPL. 01/2008; 6(9):63-63.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Ubc9 SUMO-conjugating enzyme and the Siz1 SUMO ligase sumoylate several repair and recombination proteins, including PCNA. Sumoylated PCNA binds Srs2, a helicase counteracting certain recombination events. Here we show that ubc9 mutants depend on checkpoint, recombination, and replication genes for growth. ubc9 cells maintain stalled-fork stability but exhibit a Rad51-dependent accumulation of cruciform structures during replication of damaged templates. Mutations in the Mms21 SUMO ligase resemble the ubc9 mutations. However, siz1, srs2, or pcna mutants altered in sumoylation do not exhibit the ubc9/mms21 phenotype. Like ubc9/mms21 mutants, sgs1 and top3 mutants also accumulate X molecules at damaged forks, and Sgs1/BLM is sumoylated. We propose that Ubc9 and Mms21 act in concert with Sgs1 to resolve the X structures formed during replication. Our results indicate that Ubc9- and Mms21-mediated sumoylation functions as a regulatory mechanism, different from that of replication checkpoints, to prevent pathological accumulation of cruciform structures at damaged forks.
    Cell 12/2006; 127(3):509-22. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The yeast Set1 histone H3 lysine 4 (H3K4) methyltransferase contains, in addition to its catalytic SET domain, a conserved RNA recognition motif (RRM1). We present here the crystal structure and the secondary structure assignment in solution of the Set1 RRM1. Although RRM1 has the expected betaalphabetabetaalphabeta RRM-fold, it lacks the typical RNA-binding features of these modules. RRM1 is not able to bind RNA by itself in vitro, but a construct combining RRM1 with a newly identified downstream RRM2 specifically binds RNA. In vivo, H3K4 methylation is not affected by a point mutation in RRM2 that preserves Set1 stability but affects RNA binding in vitro. In contrast mutating RRM1 destabilizes Set1 and leads to an increase of dimethylation of H3K4 at the 5'-coding region of active genes at the expense of trimethylation, whereas both, dimethylation decreases at the 3'-coding region. Taken together, our results suggest that Set1 RRMs bind RNA, but Set1 RNA-binding activity is not linked to H3K4 methylation.
    Journal of Molecular Biology 07/2006; 359(5):1170-81. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RAD53 and MEC1 are essential Saccharomyces cerevisiae genes required for the DNA replication and DNA damage checkpoint responses. Their lethality can be suppressed by increasing the intracellular pool of deoxynucleotide triphosphates. We report that deletion of YKU70 or YKU80 suppresses mec1Delta, but not rad53Delta, lethality. We show that suppression of mec1Delta lethality is not due to Ku--associated telomeric defects but rather results from the inability of Ku- cells to efficiently repair DNA double strand breaks by nonhomologous end joining. Consistent with these results, mec1Delta lethality is also suppressed by lif1Delta, which like yku70Delta and yku80Delta, prevents nonhomologous end joining. The viability of yku70Delta mec1Delta and yku80Delta mec1Delta cells depends on the ATM-related Tel1 kinase, the Mre11-Rad50-Xrs2 complex, and the DNA damage checkpoint protein Rad9. We further report that this Mec1-independent pathway converges with the Rad53/Dun1-regulated checkpoint kinase cascade and leads to the degradation of the ribonucleotide reductase inhibitor Sml1.
    Molecular and Cellular Biology 01/2006; 25(23):10652-64. · 5.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The entry into meiosis is characterized by a lengthy premeiotic S phase and a reorganization of the nuclear architecture. Analysis of centromere and telomere dynamics in wild-type Saccharomyces cerevisiae meiosis suggests that resolution of vegetative centromere and telomere clusters are independent events differently connected to premeiotic S phase. Absence of the B-type cyclin Clb5 or the Set1 histone methyltransferase leads to a delay of premeiotic S phase by separate mechanisms. In clb5Delta cells, centromere cluster resolution appears normal, whereas dissolution of the vegetative telomere clusters is impaired and meiosis-specific clustering of telomeres, i.e. bouquet formation, is grossly delayed. In set1Delta cells, centromere and telomere redistribution are both impaired and bouquet nuclei are absent, despite proper location of the meiosis-specific telomere protein Ndj1. Thus, centromere and telomere redistribution at the onset of prophase I is differentially regulated, with centromere dispersion occurring independently of premeiotic S phase. The normal kinetics of dissolution of the vegetative telomere clusters in a set1Delta mec1-1 mutant suggests the presence of a checkpoint that limits the dispersion of telomeres in absence of Set1.
    Journal of Cell Science 12/2005; 118(Pt 21):4985-94. · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Set1 protein of Saccharomyces cerevisiae is a histone methyltransferase (HMTase) acting on lysine 4 of histone H3. Inactivation of the SET1 gene in a diploid leads to a sporulation defect. We have studied various processes that take place during meiotic differentiation in set1delta diploid cells. The absence of Set1 leads to a delay of meiotic S-phase onset, which reflects a defect in DNA replication initiation. The timely induction of meiotic DNA replication does not require the Set1 HMTase activity, but depends on the SET domain. In addition, set1delta displays a severe impairment of the DNA double-strand break formation, which is not only the consequence of the replication delay. Transcriptional profiling experiments show that the induction of middle meiotic genes, but not of early meiotic genes, is affected by the loss of Set1. In contrast to meiotic replication, the transcriptional induction of the middle meiotic genes appears to depend on the methylation of H3-K4. Our results unveil multiple roles of Set1 in meiotic differentiation and distinguish between HMTase-dependent and -independent Set1 functions.
    The EMBO Journal 06/2004; 23(9):1957-67. · 9.82 Impact Factor

Publication Stats

282 Citations
62.91 Total Impact Points

Institutions

  • 2009
    • FIRC Institute of Molecular Oncology Foundation
      Milano, Lombardy, Italy
    • University of Cambridge
      Cambridge, England, United Kingdom
  • 2006
    • Brandeis University
      Waltham, Massachusetts, United States
  • 2004
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France