Are you Kevin Greer?

Claim your profile

Publications (9)24.84 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnaporthe oryzae causes rice blast disease, which is the most serious disease of cultivated rice worldwide. We previously developed the Magnaporthe grisea-Orzya sativa (MGOS) database as a repository for the M. oryzae and rice genome sequences together with a comprehensive set of functional interaction data generated by a major consortium of U.S. researchers. The MGOS database has now undergone a major redesign to include data from the international blast research community, accessible with a new intuitive, easy-to-use interface. Registered database users can manually annotate gene sequences and features as well as add mutant data and literature on individual gene pages. Over 900 genes have been manually curated based on various biological databases and the scientific literature. Gene names and descriptions, gene ontology annotations, published and unpublished information on mutants and their phenotypes, responses in diverse microarray analyses, and related literature have been incorporated. Thus far, 362 M. oryzae genes have associated information on mutants. MGOS is now poised to become a one-stop repository for all structural and functional data available on all genes of this critically important rice pathogen.
    Molecular Plant-Microbe Interactions 11/2011; 25(3):271-8. · 4.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen is thought to protect against the development of chronic kidney disease, and menopause increases the development and severity of diabetic kidney disease. In this study, we used streptozotocin (STZ) to induce diabetes in the 4-vinylcyclohexene diepoxide (VCD)-treated mouse model of menopause. DNA microarrays were used to identify gene expression changes in the diabetic kidney postmenopause. An ANOVA model, CARMA, was used to isolate the menopause effect between two groups of diabetic mice, diabetic menopausal (STZ/VCD) and diabetic cycling (STZ). In this diabetic study, 8,864 genes of the possible 15,600 genes on the array were included in the ANOVA; 99 genes were identified as demonstrating a >1.5-fold up- or downregulation between the STZ/VCD and STZ groups. We randomly selected genes for confirmation by real-time PCR; midkine (Mdk), immediate early response gene 3 (IEX-1), mitogen-inducible gene 6 (Mig6), and ubiquitin-specific protease 2 (USP2) were significantly increased in the kidneys of STZ/VCD compared with STZ mice. Western blot analysis confirmed that Mdk and IEX-1 protein abundance was significantly increased in the kidney cortex of STZ/VCD compared with STZ mice. In a separate study, DNA microarrays and CARMA analysis were used to identify the effect of menopause on the nondiabetic kidney; VCD-treated mice were compared with cycling mice. Of the possible 15,600 genes on the array, 9,142 genes were included in the ANOVA; 20 genes were identified as demonstrating a >1.5-fold up- or downregulation; histidine decarboxylase and vanin 1 were among the genes identified as differentially expressed in the postmenopausal nondiabetic kidney. These data expand our understanding of how hormone status correlates with the development of diabetic kidney disease and identify several target genes for further studies.
    AJP Renal Physiology 11/2010; 300(1):F139-46. · 4.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During postnatal development, major changes in mechanical properties of skeletal muscle occur. We investigated passive properties of skeletal muscle in mice and rabbits that varied in age from 1 day to approximately 1 year. Neonatal skeletal muscle expressed large titin isoforms directly after birth, followed by a gradual switch toward progressively smaller isoforms that required weeks-to-months to be completed. This suggests an extremely high plasticity of titin splicing during skeletal muscle development. Titin exon microarray analysis showed increased expression of a large group of exons in neonatal muscle, when compared to adult muscle transcripts, with the majority of upregulated exons coding for the elastic proline-glutamate-valine-lysine (PEVK) region of titin. Protein analysis supported expression of a significantly larger PEVK segment in neonatal muscle. In line with these findings, we found >50% lower titin-based passive stiffness of neonatal muscle when compared to adult muscle. Inhibiting 3,5,3'-tri-iodo-L-thyronine and 3,5,3',5'-tetra-iodo-L-thyronine secretion did not alter isoform switching, suggesting no major role for thyroid hormones in regulating differential titin splicing during postnatal development. In summary, our work shows that stiffening of skeletal muscle during postnatal development occurs through a decrease in titin isoform size, due mainly to a marked restructuring of the PEVK region of titin.
    Biophysical Journal 10/2009; 97(8):2277-86. · 3.67 Impact Factor
  • Kevin A. Greer, Carol Soderlund
    [Show abstract] [Hide abstract]
    ABSTRACT: The Magnaporthe grisea Oryza sativa interaction database (www. mgosdb.org) is a web-based repository for Oryza sativa and Magnaporthe oryzae genomic and experimental data with a particular emphasis on host-pathogen interactions. MGOS has recently been enhance to include community annotation and enhanced microarray functionality. The new community annotation functionality allows M. oryzae researchers to document the M. Oryzae transcriptome including: gene name/symbol and description, associated gene ontology and fungal anatomy terms, mutants and associated images, related publications, and transcript information including exon positions and translational start and stop positions. The enhanced microarray functionality allows users to enter all of the data associated with a microarray experiment that is necessary to interpret the results of the experiment. This includes the raw data files for each hybridization, the final processed data set for all hybridizations, the essential sample information (in particular the experimental factors and their values), the experimental design and hybridization scheme, and protocol information. In addition, a community forum system and a literature citation section have been added to the MGOS website.
    12/2008: pages 405-415;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study objective was to evaluate the effect of endocrine and mechanical (gel release) signaling on bovine mammary epithelial cell ultrastructure and gene expression. Cultures receiving only one stimulus demonstrated partially differentiated ultrastructure, which included abundant polysomes, limited rough endoplasmic reticulum, and absence of secretory products, whereas the 2 stimuli together induced a more complete lactogenic phenotype that included increased rough endoplasmic reticulum, abundant lipid droplets, and secretory vesicles containing casein micelles. The structural data indicated that although synthesis of milk components was initiated, the copious synthesis and secretion associated with stage II lactogenesis was not evident. Microarray analysis revealed that both prolactin and gel release independently regulated several genes linked to a wide array of cellular activities. In combination, they regulated fewer genes targeted to lactogenesis. Genes regulated by the combination treatment included claudin 7, multiple caseins, xanthine oxidoreductase, and several protein synthesis, packaging, and transport genes. Genes related to structural activity including keratin 15 (morphogenesis), alpha-spectrin (cell shape via actin cytoskeleton), and chitinase-like protein 1 (tissue remodeling) were up-regulated by the combination treatment as was the transcription factor Kruppel-like factor 2 (KLF-2). However, Snail 2, which down-regulates and inhibits tight junction components, was repressed in response to the combination treatment. These results suggest coordination between endocrine and physical signals at the genomic level that produces a more specific and targeted transcriptional response associated with stage I lactogenesis. A molecular pathway analysis of the differentially expressed genes revealed that genes regulating cell signaling were linked to those regulating cell structure and adhesion.
    Journal of Dairy Science 04/2008; 91(3):1053-66. · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used an oligonucleotide microarray to identify genes that are affected by congestive heart failure and those influenced by treatment with DITPA and DITPA in combination with captopril using a rat postinfarction model. The most striking result when comparing heart failure to sham operation was that all of the mitochondrial and metabolic enzymes affected were down regulated. When comparing heart failure with DITPA treatment, most of the down regulated metabolic genes were returned toward normal. When comparing heart failure with heart failure animals treated with DITPA and captopril, metabolic enzymes were no longer significantly downregulated. DITPA treatment and the combination of DITPA and captopril show that the metabolic enzymes were no longer down regulated. This represents a substantial improvement in the energy- generating capacity of the heart. These results indicate that the actions of DITPA and the combination of DITPA and captopril in heart failure can be partially explained by differences in gene activation.
    Journal of Cardiovascular Pharmacology 12/2007; 50(5):526-34. · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify novel gene targets of vasopressin regulation in the renal medulla, we performed a cDNA microarray study on the inner medullary tissue of mice following a 48-h water restriction protocol. In this study, 4,625 genes of the possible approximately 12,000 genes on the array were included in the analysis, and of these 157 transcripts were increased and 63 transcripts were decreased by 1.5-fold or more. Quantitative, real-time PCR measurements confirmed the increases seen for 12 selected transcripts, and the decreases were confirmed for 7 transcripts. In addition, we measured transcript abundance for many renal collecting duct proteins that were not represented on the array; aquaporin-2 (AQP2), AQP3, Pax-8, and alpha- and beta-Na-K-ATPase subunits were all significantly increased in abundance; the beta- and gamma-subunits of ENaC and the vasopressin type 1A receptor were significantly decreased. To correlate changes in mRNA expression with changes in protein expression, we carried out quantitative immunoblotting. For most of the genes examined, changes in mRNA abundances were not associated with concomitant protein abundance changes; however, AQP2 transcript abundance and protein abundance did correlate. Surprisingly, aldolase B transcript abundance was increased but protein abundance was decreased following 48 h of water restriction. Several transcripts identified by microarray were novel with respect to their expression in mouse renal medullary tissues. The steroid hormone enzyme 3beta-hydroxysteroid dehydrogenase 4 (3betaHSD4) was identified as a novel target of vasopressin regulation, and via dual labeling immunofluorescence we colocalized the expression of this protein to AQP2-expressing collecting ducts of the kidney. These studies have identified several transcripts whose abundances are regulated in mouse inner medulla in response to an increase in endogenous vasopressin levels and could play roles in the regulation of salt and water excretion.
    American journal of physiology. Renal physiology 08/2006; 291(1):F218-24. · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine gene expression changes in the mammary gland following bovine somatotropin (bST) treatment, four lactating Holstein cows (253±143 DIM) were used. Mammary tissue biopsies were taken on d -5, -2, 1 and 6 relative to a single 500 mg dose of bST (Posilac<sup>®</sup>, Monsanto, St. Louis, MO). Total RNA was isolated, amplified, converted to cDNA, labeled with Cy3 or Cy5 dye, and hybridized to the NBFGC bovine microarray (Michigan State University). Comparisons were made using a modified loop design with each cow on each day represented once. Milk yield was increased (30%; P < 0.05) by d 4 and remained elevated through the end of the study. Milk fat, protein and lactose content were not affected (P > 0.1).
    01/2005;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The heart is an important target of thyroid hormone actions. Only a limited number of cardiac target genes have been identified, and little is known about their regulation by T(3) (3,3',5-triiodothyronine) and thyroid hormone analogs. We used an oligonucleotide microarray to identify novel cardiac genes regulated by T(3) and two thyroid hormone analogs, 3,5-diidodothyropropionic acid (DITPA) and CGS 23425 [N-[3,5-dimethyl-4-(4'-hydroxy-3'-isopropylphenoxy)-phenyl]-oxamic acid]. DITPA binds with lower affinity than T(3) to thyroid hormone receptor alpha1 and beta1 isoforms, whereas CGS 23425 binds selectively to beta1. Fluorescent-labeled cDNA was prepared from cultured heart cells maintained in medium stripped of thyroid hormone ("hypothyroid" control) or treated with T(3), DITPA, and CGS 23425 at concentrations 5 times their respective K(d) values for 48 h. The arrays were scanned and analyzed using an analysis of variance program. Sixty-four genes were identified that were >1.5 times up- or down-regulated by one of the treatments with P < 0.05. The genes regulated by T(3) and DITPA were nearly identical. Thirteen genes were differentially regulated by CGS 23425. Genes encoding contractile proteins, Ca(2+)-ATPase of sarcoplasmic reticulum and several proteins of mitochondrial oxidative phosphorylation, were up-regulated by T(3) and DITPA but not by CGS 23425. These results indicate that some, but not all, of the actions of thyroid hormone analogs can be explained by differences in gene activation.
    Journal of Pharmacology and Experimental Therapeutics 10/2004; 311(1):164-71. · 3.89 Impact Factor