Kazuhiro Eto

Teikyo University, Edo, Tōkyō, Japan

Are you Kazuhiro Eto?

Claim your profile

Publications (45)275.97 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The C57BL/6:Slc23a13(-/-);Gpd2(-/-) double-knockout (a.k.a., citrin/mitochondrial glycerol 3-phosphate dehydrogenase double knockout or Ctrn/mGPD-KO) mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2), making it a suitable model of human citrin deficiency. In the present study, we show that when mature Ctrn/mGPD-KO mice are switched from a standard chow diet (CE-2) to a purified maintenance diet (AIN-93M), this resulted in a significant loss of body weight as a result of reduced food intake compared to littermate mGPD-KO mice. However, supplementation of the purified maintenance diet with additional protein (from 14% to 22%; and concomitant reduction or corn starch), or with specific supplementation with alanine, sodium glutamate, sodium pyruvate or medium-chain triglycerides (MCT), led to increased food intake and body weight gain near or back to that on chow diet. No such effect was observed when supplementing the diet with other sources of fat that contain long-chain fatty acids. Furthermore, when these supplements were added to a sucrose solution administered enterally to the mice, which has been shown previously to lead to elevated blood ammonia as well as altered hepatic metabolite levels in Ctrn/mGPP-KO mice, this led to metabolic correction. The elevated hepatic glycerol 3-phosphate and citrulline levels after sucrose administration were suppressed by the administration of sodium pyruvate, alanine, sodium glutamate and MCT, although the effect of MCT was relatively small. Low hepatic citrate and increased lysine levels were only found to be corrected by sodium pyruvate, while alanine and sodium glutamate both corrected hepatic glutamate and aspartate levels. Overall, these results suggest that dietary factors including increased protein content, supplementation of specific amino acids like alanine and sodium glutamate, as well as sodium pyruvate and MCT all show beneficial effects on citrin deficiency by increasing the carbohydrate tolerance of Ctrn/mGPD-KO mice, as observed through increased food intake and maintenance of body weight.
    Molecular Genetics and Metabolism 08/2012; · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The citrin/mitochondrial glycerol-3-phosphate dehydrogenase (mGPD) double-knockout mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis and adult-onset type II citrullinemia, making it a suitable model of human citrin deficiency. In the present study, we investigated metabolic disturbances in the livers of wild-type, citrin (Ctrn) knockout, mGPD knockout, and Ctrn/mGPD double-knockout mice following oral sucrose versus saline administration using metabolomic approaches. By using gas chromatography/mass spectrometry and capillary electrophoresis/mass spectrometry, we found three general groupings of metabolite changes in the livers of the double-knockout mice following sucrose administration that were subsequently confirmed using liquid chromatography/mass spectrometry or enzymatic methods: a marked increase of hepatic glycerol 3-phosphate, a generalized decrease of hepatic tricarboxylic acid cycle intermediates, and alterations of hepatic amino acid levels related to the urea cycle or lysine catabolism including marked increases in citrulline and lysine. Furthermore, concurrent oral administration of sodium pyruvate with sucrose ameliorated the hyperammonemia induced by sucrose, as had been shown previously, as well as almost completely normalizing the hepatic metabolite perturbations found. Overall, we have identified additional metabolic disturbances in double-KO mice following oral sucrose administration, and provided further evidence for the therapeutic use of sodium pyruvate in our mouse model of citrin deficiency.
    Molecular Genetics and Metabolism 08/2011; 104(4):492-500. · 2.83 Impact Factor
  • Endocrine Journal - ENDOCR J. 01/2010; 57(2):141-152.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adenosine 5' -monophosphate-activated protein kinase (AMPK) has been implicated in the regulation of energy metabolism, although its role in the pancreatic beta cells remains unclear. In the present, we have overexpressed a dominant negative form of AMPKalpha1 subunit (Asp57Ala) tagged with c-myc epitope (AMPKalpha1-DN) in INS-1D cells with an adenoviral vector. After 48 h of adenoviral infection, overexpression of AMPKalpha1-DN in INS-1D cells was confirmed by Western blot analysis with anti-c-myc antibody. Phosphorylation of the Thr172 in AMPKalpha1/alpha2 subunit was progressively decreased in parallel with increasing number of adenoviral titers. Glucose-stimulated insulin secretion in response to 30 mmol/L glucose was decreased in INS-1D cells overexpressing AMPKalpha1-DN as compared to control cells infected with adeno- LacZ vector. Neither cellular insulin content nor insulin mRNA level was changed between the two groups. Phosphorylation of acetyl-CoA carboxylase (ACC), a down-stream substrate of AMPK, was decreased, indicating that ACC activity was increased, due to the decreased AMPK activity. In fact, intracellular triglyceride content was increased as compared to control cells. The beta-oxidation of palmitate was decreased at 30 mmol/L glucose. Insulin secretion in response to potassium chloride or glibenclamide was also decreased as compared to control cells. In conclusion, suppression of AMPK activity in beta-cells inhibited insulin secretion in response to glucose, potassium chloride or glibenclamide without altering insulin content. Accumulation of triglyceride subsequent to the activation of ACC by suppression of AMPK activity, was suggested to be, at least in part, responsible for the impaired insulin secretion through so-called lipotoxicity mechanism.
    Endocrine Journal 11/2009; 57(2):141-52. · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A decrease in plasma adiponectin levels has been shown to contribute to the development of diabetes. However, it remains uncertain whether adiponectin plays a role in the regulation of insulin secretion. In this study, we investigated whether adiponectin may be involved in the regulation of insulin secretion in vivo and in vitro. The effect of adiponectin on insulin secretion was measured in vitro and in vivo, along with the effects of adiponectin on ATP generation, membrane potentials, Ca2+ currents, cytosolic calcium concentration and state of 5'-AMP-activated protein kinase (AMPK). In addition, insulin granule transport was measured by membrane capacitance and total internal reflection fluorescence (TIRF) analysis. Adiponectin significantly stimulated insulin secretion from pancreatic islets to approximately 2.3-fold the baseline value in the presence of a glucose concentration of 5.6 mmol/l. Although adiponectin had no effect on ATP generation, membrane potentials, Ca2+ currents, cytosolic calcium concentrations or activation status of AMPK, it caused a significant increase of membrane capacitance to approximately 2.3-fold the baseline value. TIRF analysis revealed that adiponectin induced a significant increase in the number of fusion events in mouse pancreatic beta cells under 5.6 mmol/l glucose loading, without affecting the status of previously docked granules. Moreover, intravenous injection of adiponectin significantly increased insulin secretion to approximately 1.6-fold of baseline in C57BL/6 mice. The above results indicate that adiponectin induces insulin secretion in vitro and in vivo.
    Diabetologia 06/2008; 51(5):827-35. · 6.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Citrin is the liver-type mitochondrial aspartate-glutamate carrier that participates in urea, protein, and nucleotide biosynthetic pathways by supplying aspartate from mitochondria to the cytosol. Citrin also plays a role in transporting cytosolic NADH reducing equivalents into mitochondria as a component of the malate-aspartate shuttle. In humans, loss-of-function mutations in the SLC25A13 gene encoding citrin cause both adult-onset type II citrullinemia and neonatal intrahepatic cholestasis, collectively referred to as human citrin deficiency. Citrin knock-out mice fail to display features of human citrin deficiency. Based on the hypothesis that an enhanced glycerol phosphate shuttle activity may be compensating for the loss of citrin function in the mouse, we have generated mice with a combined disruption of the genes for citrin and mitochondrial glycerol 3-phosphate dehydrogenase. The resulting double knock-out mice demonstrated citrullinemia, hyperammonemia that was further elevated by oral sucrose administration, hypoglycemia, and a fatty liver, all features of human citrin deficiency. An increased hepatic lactate/pyruvate ratio in the double knock-out mice compared with controls was also further elevated by the oral sucrose administration, suggesting that an altered cytosolic NADH/NAD(+) ratio is closely associated with the hyperammonemia observed. Microarray analyses identified over 100 genes that were differentially expressed in the double knock-out mice compared with wild-type controls, revealing genes potentially involved in compensatory or downstream effects of the combined mutations. Together, our data indicate that the more severe phenotype present in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice represents a more accurate model of human citrin deficiency than citrin knock-out mice.
    Journal of Biological Chemistry 09/2007; 282(34):25041-52. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The homeodomain transcription factor pancreas duodenum homeobox-1 (PDX-1) is a key regulator of pancreatic beta-cell development, function, and survival. Deficits in PDX-1 expression result in insulin deficiency and hyperglycemia. We previously found that the glucose-responsive transcription factor early growth response-1 (Egr-1) activates the insulin promoter in part by increasing expression levels of PDX-1. We now report that Egr-1 binds and activates multiple regulatory sites within the pdx-1 promoter. We identified consensus Egr-1 recognition sequences within proximal and distal regions of the mouse pdx-1 promoter and demonstrated specific binding of Egr-1 by chromatin immunoprecipitation and electrophoretic mobility shift assays. Overexpression of Egr-1 increased transcriptional activation of the -4500 proximal pdx-1 promoter and of the highly conserved regulatory Areas I, II, and III. Mutagenesis of a specific Egr-1 binding site within Area III substantially decreased Egr-1-mediated activation. Egr-1 increased the transcriptional activation of Areas I and II, despite the absence of Egr-1 recognition sequences within this promoter segment, suggesting that Egr-1 also can regulate the pdx-1 promoter indirectly. Egr-1 increased, and a dominant-negative Egr-1 mutant repressed, the transcriptional activation of distal pdx-1 promoter sequences. Mutagenesis of a specific Egr-1 binding site within regulatory Area IV reduced basal and Egr-1-mediated transcriptional activation. Our data indicate that Egr-1 regulates expression of PDX-1 in pancreatic beta-cells by both direct and indirect activation of the pdx-1 promoter. We propose that Egr-1 expression levels may act as a sensor in pancreatic beta-cells to translate extracellular signals into changes in PDX-1 expression levels and pancreatic beta-cell function.
    Journal of Biological Chemistry 04/2007; 282(9):5973-83. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucokinase (Gck) functions as a glucose sensor for insulin secretion, and in mice fed standard chow, haploinsufficiency of beta cell-specific Gck (Gck(+/-)) causes impaired insulin secretion to glucose, although the animals have a normal beta cell mass. When fed a high-fat (HF) diet, wild-type mice showed marked beta cell hyperplasia, whereas Gck(+/-) mice demonstrated decreased beta cell replication and insufficient beta cell hyperplasia despite showing a similar degree of insulin resistance. DNA chip analysis revealed decreased insulin receptor substrate 2 (Irs2) expression in HF diet-fed Gck(+/-) mouse islets compared with wild-type islets. Western blot analyses confirmed upregulated Irs2 expression in the islets of HF diet-fed wild-type mice compared with those fed standard chow and reduced expression in HF diet-fed Gck(+/-) mice compared with those of HF diet-fed wild-type mice. HF diet-fed Irs2(+/-) mice failed to show a sufficient increase in beta cell mass, and overexpression of Irs2 in beta cells of HF diet-fed Gck(+/-) mice partially prevented diabetes by increasing beta cell mass. These results suggest that Gck and Irs2 are critical requirements for beta cell hyperplasia to occur in response to HF diet-induced insulin resistance.
    Journal of Clinical Investigation 02/2007; 117(1):246-57. · 12.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in extracellular glucose levels regulate the expression of the immediate-early response gene and zinc finger transcription factor early growth response-1 (Egr-1) in insulin-producing pancreatic beta-cells, but key target genes of Egr-1 in the endocrine pancreas have not been identified. We found that overexpression of Egr-1 in clonal (INS-1) beta-cells increased transcriptional activation of the rat insulin I promoter. In contrast, reductions in Egr-1 expression levels or function with the introduction of either small interfering RNA targeted to Egr-1 (siEgr-1) or a dominant-negative form of Egr-1 decreased insulin promoter activation, and siEgr-1 suppressed insulin gene expression. Egr-1 did not directly interact with insulin promoter sequences, and mutagenesis of a potential G box recognition sequence for Egr-1 did not impair the Egr-1 responsiveness of the insulin promoter, suggesting that regulation of insulin gene expression by Egr-1 is probably mediated through additional transcription factors. Overexpression of Egr-1 increased, and reduction of Egr-1 expression decreased, transcriptional activation of the glucose-responsive FarFlat minienhancer within the rat insulin I promoter despite the absence of demonstrable Egr-1-binding activity to FarFlat sequences. Notably, augmenting Egr-1 expression levels in insulin-producing cells increased the mRNA and protein expression levels of pancreas duodenum homeobox-1 (PDX-1), a major transcriptional regulator of glucose-responsive activation of the insulin gene. Increasing Egr-1 expression levels enhanced PDX-1 binding to insulin promoter sequences, whereas mutagenesis of PDX-1-binding sites reduced the capacity of Egr-1 to activate the insulin promoter. We propose that changes in Egr-1 expression levels in response to extracellular signals, including glucose, can regulate PDX-1 expression and insulin production in pancreatic beta-cells.
    Endocrinology 07/2006; 147(6):2923-35. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple forms of heritable diabetes are associated with mutations in transcription factors that regulate insulin gene transcription and the development and maintenance of pancreatic beta-cell mass. The coactivator Bridge-1 (PSMD9) regulates the transcriptional activation of glucose-responsive enhancers in the insulin gene in a dose-dependent manner via PDZ domain-mediated interactions with E2A transcription factors. Here we report that the pancreatic overexpression of Bridge-1 in transgenic mice reduces insulin gene expression and results in insulin deficiency and severe diabetes. Dysregulation of Bridge-1 signaling increases pancreatic apoptosis with a reduction in the number of insulin-expressing pancreatic beta-cells and an expansion of the complement of glucagon-expressing pancreatic alpha-cells in pancreatic islets. Increased expression of Bridge-1 alters pancreatic islet, acinar, and ductal architecture and disrupts the boundaries between endocrine and exocrine cellular compartments in young adult but not neonatal mice, suggesting that signals transduced through this coactivator may influence postnatal pancreatic islet morphogenesis. Signals mediated through the coactivator Bridge-1 may regulate both glucose homeostasis and pancreatic beta-cell survival. We propose that coactivator dysfunction in pancreatic beta-cells can limit insulin production and contribute to the pathogenesis of diabetes.
    Molecular Endocrinology 02/2006; 20(1):167-82. · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterozygous peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-deficient (PPARgamma(+/-)) mice were protected from high-fat diet-induced insulin resistance. To determine the impact of systemic reduction of PPAR-gamma activity on beta-cell function, we investigated insulin secretion in PPARgamma(+/-) mice on a high-fat diet. Glucose-induced insulin secretion in PPARgamma(+/-) mice was impaired in vitro. The tissue triglyceride (TG) content of the white adipose tissue, skeletal muscle, and liver was decreased in PPARgamma(+/-) mice, but it was unexpectedly increased in the islets, and the increased TG content in the islets was associated with decreased glucose oxidation. Administration of a PPAR-gamma agonist, pioglitazone, reduced the islet TG content in PPARgamma(+/-) mice on a high-fat diet and ameliorated the impaired insulin secretion in vitro. Our results demonstrate that PPAR-gamma protects islets from lipotoxicity by regulating TG partitioning among tissues and that a PPAR-gamma agonist can restore impaired insulin secretion under conditions of islet fat accumulation.
    Diabetes 12/2004; 53(11):2844-54. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triglyceride (TG) accumulation in pancreatic beta-cells is thought to be associated with impaired insulin secretory response to glucose (lipotoxicity). To better understand the mechanism of the impaired insulin secretory response to glucose in beta-cell lipotoxicity, we overexpressed a constitutively active form of the sterol regulatory element-binding protein- 1c (SREBP-1c), a master transcriptional factor of lipogenesis, in INS-1 cells with an adenoviral vector. This treatment was associated with strong activation of transcription of the genes involved in fatty acid biosynthesis, increased cellular TG content, severely blunted glucose-stimulated insulin secretion, and enhanced expression of the uncoupling protein-2 (UCP-2), which supposedly dissipates the mitochondrial electrochemical potential. To decrease the up-regulated UCP-2 expression, small interfering RNA for UCP-2 was used. Introduction of the small interfering RNA increased the ATP/ADP ratio and partially rescued the glucose-stimulated insulin secretion in the cells overexpressing SREBP-1c, but did not affect the cellular TG content. Next, the effect of the AMP-activated protein kinase (AMPK) agonist, 5-amino-4-imidazolecarboxamide riboside, was examined in the lipotoxicity model. Exposure of the cells with lipotoxicity to 5-amino-4-imidazolecarboxamide riboside increased free fatty acid oxidation, partially reversed the TG accumulation, phosphorylated AMPK and acetyl-coenzyme A carboxylase, and improved the impaired glucose-stimulated insulin secretion. These results suggest that UCP-2 down-regulation and AMPK activation could be candidate targets for releasing beta-cells from lipotoxicity.
    Endocrinology 09/2004; 145(8):3566-77. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A role for mitochondrial glycerol-3-phosphate dehydrogenase (mGPD) in thermogenesis was investigated in transgenic mice lacking the mGPD gene (mGPD-/-). Reared and studied at 22 C, these mice have a small, but significant, reduction (7-10%) in energy expenditure, as evidenced by oxygen consumption (QO2) and food intake, and show signs of increased brown adipose tissue (BAT) stimulation, higher plasma T4 and T3 concentrations, as well as increased uncoupling protein 3 (UCP3) expression in muscle. When acclimated at thermoneutrality temperature (32 C), QO2 decreased in both genotypes, but the difference between them widened to 16%, whereas BAT underwent atrophy, and plasma T4 and T3 levels and UCP3 mRNA decreased, yet T3 and UCP3 persisted at significantly higher levels in mGPD-/- mice. Such differences disappeared when the mice were rendered hypothyroid. A compensatory role for the observed changes in BAT, thyroid hormone levels, and UCP3 was investigated with a 2-h cold challenge of 12 C in euthyroid and hypothyroid mice. No hypothermia ensued if the mice had been acclimated at 22 C, but when acclimated at 32 C, euthyroid mGPD-/- mice became significantly more hypothermic than the wild-type controls. When rendered hypothyroid, this difference was accentuated, and the mGPD-/- mice developed profound hypothermia ( approximately 28 vs. 34 C in wild-type mice; P < 0.001). Thus, mGPD-deficient mice have, despite increased plasma T4 and T3, a small, but distinct, reduction in obligatory thermogenesis, which is compensated by increased BAT facultative thermogenesis and by thyroid hormone-dependent mechanisms using other proteins, possibly UCP3. The results support a role for mGPD in thyroid hormone thermogenesis.
    Endocrinology 01/2004; 144(12):5469-79. · 4.72 Impact Factor
  • Source
    01/2004;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously demonstrated that Irs2-/- mice develop diabetes due to beta-cell growth failure and insulin resistance; however, glucose-induced insulin secretion was increased in islets isolated from Irs2-/- mice. Pdx-1, a transcription factor important for maintenance of the beta-cell function, was recently reported to be severely reduced in Irs2-/- murine beta-cells. We report herein that Pdx-1 expression, including the amount of Pdx-1 localized in the nucleus, is not down-regulated in our Irs2-/- murine beta-cells with a C57BL/6 background. We have also demonstrated the expression of upstream genes of Pdx-1, such as HNF3beta and HNF1alpha, as well as its downstream genes, including insulin, Glut2, and Nkx6.1, to be well preserved. We have further demonstrated Pdx-1 expression to also be preserved in beta-cells of 30-week-old diabetic Irs2-/- mice. In addition, surprisingly, even in Irs2-/- mice on a high fat diet with markedly elevated blood glucose, exceeding 400 mg/dl, Pdx-1 expression was not reduced. Furthermore, we found Pdx-1 to be markedly decreased in certain severely diabetic Irs2-/- mice with a mixed C57BL/6J x 129Sv background. We conclude that 1) Pdx-1 expression in Irs2-/- mice is regulated in a strain-dependent manner, 2) Irs2-/- mice develop diabetes associated with beta-cell growth failure even when Pdx1 expression is preserved, and 3) Pdx-1 expression is preserved in severely hyperglycemic Irs2-/- mice with a C57BL/6 background on a high fat diet.
    Journal of Biological Chemistry 11/2003; 278(44):43691-8. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate.
    AJP Endocrinology and Metabolism 09/2003; 285(2):E262-71. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although we and others have generated IRS-2 knock-out (IRS-2(-/-)) mice, significant differences were seen between the two lines of IRS-2(-/-) mice in the severity of diabetes and alterations of beta-cell mass. It has been reported that although IRS-1 and IRS-3 knock-out mice showed normal blood glucose levels, IRS-1/IRS-3 double knock-out mice exhibited marked hyperglycemia. Thus, IRS-1 and IRS-3 compensate each other's functions in maintaining glucose homeostasis. To assess the effect of genetic background and also ablation of IRS-3 on IRS-2(-/-), we generated IRS-2/IRS-3 double knock-out (IRS-2(-/-)IRS-3(-/-)) mice by crossing IRS-3(-/-) mice (129/Sv and C57Bl/6 background) with our IRS-2(-/-) mice (CBA and C57Bl/6 background). Intercrosses of IRS-2(+/-)IRS-3(+/-) mice yielded nine genotypes, and all of them including IRS-2(-/-)IRS-3(-/-) mice were apparently healthy and showed normal growth. However, at 10-20 weeks of age, 20-30% mice carrying a null mutation for the IRS-2 gene, irrespective of the IRS-3 genotype, developed diabetes. When mice with diabetes were excluded from the analysis of glucose and insulin tolerance test, IRS-2(-/-)IRS-3(-/-) showed a degree of glucose intolerance and insulin resistance similar to those of IRS-2(-/-) mice. Both IRS-2(-/-) and IRS-2(-/-)IRS-3(-/-) mice had moderately reduced beta-cell mass despite having insulin resistance. Insulin-positive beta-cells were decreased to nearly zero in IRS-2(-/-) mice with diabetes. Although Pdx1 and glucose transporter 2 expressions were essentially unaltered in islets from IRS-2(-/-) mice without diabetes, they were dramatically decreased in IRS-2(-/-) mice with diabetes. Taken together, these observations indicate that IRS-3 does not play a role compensating for the loss of IRS-2 in maintaining glucose homeostasis and that the severity of diabetes in IRS-2(-/-) mice depends upon genetic background, suggesting the existence of modifier gene(s) for diabetes in mice of the 129/Sv genetic strain.
    Journal of Biological Chemistry 05/2003; 278(16):14284-90. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adipocyte-derived hormone adiponectin has been shown to play important roles in the regulation of energy homeostasis and insulin sensitivity. In this study, we analyzed globular domain adiponectin (gAd) transgenic (Tg) mice crossed with leptin-deficient ob/ob or apoE-deficient mice. Interestingly, despite an unexpected similar body weight, gAd Tg ob/ob mice showed amelioration of insulin resistance and beta-cell degranulation as well as diabetes, indicating that globular adiponectin and leptin appeared to have both distinct and overlapping functions. Amelioration of diabetes and insulin resistance was associated with increased expression of molecules involved in fatty acid oxidation such as acyl-CoA oxidase, and molecules involved in energy dissipation such as uncoupling proteins 2 and 3 and increased fatty acid oxidation in skeletal muscle of gAd Tg ob/ob mice. Moreover, despite similar plasma glucose and lipid levels on an apoE-deficient background, gAd Tg apoE-deficient mice showed amelioration of atherosclerosis, which was associated with decreased expression of class A scavenger receptor and tumor necrosis factor alpha. This is the first demonstration that globular adiponectin can protect against atherosclerosis in vivo. In conclusion, replenishment of globular adiponectin may provide a novel treatment modality for both type 2 diabetes and atherosclerosis.
    Journal of Biological Chemistry 02/2003; 278(4):2461-8. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triacylglyceride (TG) accumulation in pancreatic beta-cells is associated with impaired insulin secretion, which is called lipotoxicity. To gain a better understanding of the pathophysiology of lipotoxicity, we generated three models of dysregulated fatty acid metabolism in beta-cells. The overexpression of sterol regulatory element binding protein-1c induced lipogenic genes and TG accumulation. Under these conditions, we observed a decrease in glucose oxidation and upregulation of uncoupling protein-2, which might be causally related to the decreased glucose-stimulated insulin secretion. The overexpression of AMP-activated protein kinase was accompanied by decreased lipogenesis, increased fatty acid oxidation, and decreased glucose oxidation; insulin secretions to glucose and depolarization stimuli were decreased, probably because of the decrease in glucose oxidation and cellular insulin content. It was notable that the secretory response to palmitate was blunted, which would suggest a role of the fatty acid synthesis pathway, but not its oxidative pathway in palmitate-stimulated insulin secretion. Finally, we studied islets of PPAR-gamma(+/-) mice that had increased insulin sensitivity and low TG content in white adipose tissue, skeletal muscle, and liver. On a high-fat diet, glucose-stimulated insulin secretion was decreased in association with increased TG content in the islets, which might be mediated through the elevated serum free fatty acid levels and their passive transport into beta-cells. These results revealed some aspects about the mechanisms by which alterations of fatty acid metabolism affect beta-cell functions.
    Diabetes 01/2003; 51 Suppl 3:S414-20. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adiponectin (Ad) is a hormone secreted by adipocytes that regulates energy homeostasis and glucose and lipid metabolism. However, the signaling pathways that mediate the metabolic effects of Ad remain poorly identified. Here we show that phosphorylation and activation of the 5'-AMP-activated protein kinase (AMPK) are stimulated with globular and full-length Ad in skeletal muscle and only with full-length Ad in the liver. In parallel with its activation of AMPK, Ad stimulates phosphorylation of acetyl coenzyme A carboxylase (ACC), fatty-acid oxidation, glucose uptake and lactate production in myocytes, phosphorylation of ACC and reduction of molecules involved in gluconeogenesis in the liver, and reduction of glucose levels in vivo. Blocking AMPK activation by dominant-negative mutant inhibits each of these effects, indicating that stimulation of glucose utilization and fatty-acid oxidation by Ad occurs through activation of AMPK. Our data may provide a novel paradigm that an adipocyte-derived antidiabetic hormone, Ad, activates AMPK, thereby directly regulating glucose metabolism and insulin sensitivity in vitro and in vivo.
    Nature Medicine 12/2002; 8(11):1288-95. · 22.86 Impact Factor

Publication Stats

5k Citations
275.97 Total Impact Points

Institutions

  • 2011–2012
    • Teikyo University
      • Department of Medicine
      Edo, Tōkyō, Japan
  • 1993–2009
    • The University of Tokyo
      • • Faculty & Graduate School of Medicine
      • • Department of Internal Medicine
      • • Department of Diabetes and Metabolic Diseases
      • • Division of Internal Medicine
      Tokyo, Tokyo-to, Japan
  • 2006–2007
    • Harvard Medical School
      Boston, Massachusetts, United States
    • Massachusetts General Hospital
      • Laboratory of Molecular Endocrinology
      Boston, MA, United States