Jun Liu

Wuhan University, Wu-han-shih, Hubei, China

Are you Jun Liu?

Claim your profile

Publications (10)37.16 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whether administration of total alkaloids from Commelina communis L. (TAC) reduces lung damage in influenza virus-infected mice was investigated. Compared with untreated mice, significantly less severe damage was found in the lungs of mice administered TAC at 8 mg/kg per day for 6 days. TAC significantly decreased viral loads in the lungs. The concentrations of IFN-γ in the serum of TAC-treated mice were significantly lower than those of virus control mice at 4 and 6 days post-infection. The results indicate that TAC imparted partial protection to the mice by reducing pulmonary viral loads and limiting lesions in the lungs.
    Microbiology and Immunology 12/2010; 54(12):754-7. DOI:10.1111/j.1348-0421.2010.00277.x · 1.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bluetongue virus (BTV) is an icosahedral non-enveloped virus within the genus Orbivirus of Reoviridae and exists as 24 distinct serotypes. BTV can infect all ruminant species and causes severe sickness in sheep. Recently, it was reported that BTV can infect some human cancer cells selectively. Because of the important oncolysis of this virus, we developed a novel purifying method for large-scale production. The purifying logic is simple, which is picking out all the components unwanted and the left is what we want. The process can be summarized in 4 steps: centrifugation, pulling down cell debrises and soluble proteins by co-immunoprecipitation with agarose Protein A, dialysis and filtration sterilization after concentration. The result of transmission electron microscope (TEM) observation showed that the sample of purified virus has a very clear background and the virions still kept intact. The result of 50% tissue culture infective dose (TCID(50)) assay showed that the bioactivity of purified virus is relatively high. This method can purify BTV-10 with high quality and high biological activity on large-scale production. It also can be used for purifying other BTV serotypes.
    Virology Journal 06/2010; 7:126. DOI:10.1186/1743-422X-7-126 · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Recurrence and metastasis are the major factors associated with the poor prognosis of hepatocellular carcinoma (HCC). It was confirmed that multiple chemokines and their receptors are related to the progression and metastasis of HCC. The aim of this research was to conduct an investigation into whether macrophage inflammatory protein-1alpha/CCL3, and its receptor CCR1 play a role in HCC invasion and metastasis. Methods: We used reverse transcription polymerase chain reaction, immunocytochemistry and flow cytometry to detect CCR1 mRNA and protein expression in the four hepatoma cell lines HepG2, Hep3B, HLE and HLF; and we conducted a microscope cell migration experiment to observe the pseudopodia formation and mobility of the hepatoma cells. The concentration of intracellular calcium was measured by fluorescence microscopy. Results: CCR1 mRNA and protein were positively expressed in the four hepatoma cell lines HepG2, Hep3B, HLE and HLF. Following CCL3 stimulation, obvious pseudopodia formation of hepatoma cells was observed using a fluorescence microscope. The cell migration experiment showed that after incubation with CCL3, the number of Hep3B cells which passed through the polycarbonate microporous filter membranes increased to an obvious extent. After CCL3 incubation, the intracellular Ca(2+) level of the Hep3B cells increased to an obvious extent. Conclusion: Chemokine CCL3 facilitates the migration of hepatoma by changing the concentration intracellular Ca(2+). The CCL3-CCR1 axis may play an important role in HCC invasion and metastasis. It may also be a potential target for HCC therapy or for prevention of the recurrence and metastasis of HCC.
    Hepatology Research 03/2010; 40(4):424-31. DOI:10.1111/j.1872-034X.2009.00619.x · 2.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A single nucleotide polymorphism in the DAB2IP gene is associated with risk of aggressive prostate cancer (PCa), and loss of DAB2IP expression is frequently detected in metastatic PCa. However, the functional role of DAB2IP in PCa remains unknown. Here, we show that the loss of DAB2IP expression initiates epithelial-to-mesenchymal transition (EMT), which is visualized by repression of E-cadherin and up-regulation of vimentin in both human normal prostate epithelial and prostate carcinoma cells as well as in clinical prostate-cancer specimens. Conversely, restoring DAB2IP in metastatic PCa cells reversed EMT. In DAB2IP knockout mice, prostate epithelial cells exhibited elevated mesenchymal markers, which is characteristic of EMT. Using a human prostate xenograft-mouse model, we observed that knocking down endogenous DAB2IP in human carcinoma cells led to the development of multiple lymph node and distant organ metastases. Moreover, we showed that DAB2IP functions as a scaffold protein in regulating EMT by modulating nuclear beta-catenin/T-cell factor activity. These results show the mechanism of DAB2IP in EMT and suggest that assessment of DAB2IP may provide a prognostic biomarker and potential therapeutic target for PCa metastasis.
    Proceedings of the National Academy of Sciences 02/2010; 107(6):2485-90. DOI:10.1073/pnas.0908133107 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor hypoxia is often associated with resistance to chemotherapy. Multidrug resistance type 1 (MDR1) protein is a member of the adenosine triphosphate binding cassette (ABC) proteins, some of which are involved in the multidrug resistance (MDR) phenotype in tumors. Many studies have focused on the role of these proteins in modulating drug resistance, but their effect on retention of imaging agents is less well studied. To study the role of MDR1 expression on the accumulation of (64)Cu-diacetyl-bis(N4-methylthiosemicarbazone) ((64)Cu-ATSM) and (64)Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) ((64)Cu-PTSM) in human tumors in vitro and in vivo, we used a model system composed of a low MDR1-expressing parent uterine sarcoma cell line and a daughter cell line selected for overexpression of MDR1. Aromatase knockout (ArKO) mice that spontaneously developed liver tumors were used as an additional in vivo model to study the effect of MDR expression on (64)Cu-ATSM and -PTSM retention. Biodistribution experiments after injection of (64)Cu-ATSM or -PTSM were performed in wild-type mice, ArKO mice, and ArKO mice bearing liver tumors (n = 3-5/group), and in nude mice bearing human tumor xenografts for in vivo PET/CT. Liver expression of Abcb1a and Abcb1b, the MDR1 proteins in mouse liver, was determined by real-time polymerase chain reaction. (64)Cu-ATSM and -PTSM accumulation and efflux studies were conducted in tumor cell lines. The uptake experiments were repeated after knockdown of MDR1 protein expression using MDR1-specific small interfering RNAs. In vivo, the hepatic tumors had a lower percentage injected dose per gram of (64)Cu-ATSM or -PTSM and more highly expressed Abcb1b than did wild-type liver or nontumor-bearing ArKO liver. High MDR1-expressing tumors showed lower tracer activity on PET/CT images. In vitro, cells highly expressing MDR1 had significantly decreased (64)Cu-ATSM and -PTSM retention and enhanced efflux. Knockdown of MDR1 expression significantly enhanced the (64)Cu-ATSM and -PTSM retention and decreased the efflux in MDR1-positive cells. The expression of MDR1 glycoprotein (or its equivalents in mice) affects the retention of (64)Cu-ATSM and -PTSM in the human and murine tumors tested. These results may have implications for clinical hypoxia imaging in tumors and the therapeutic efficacy of (64)Cu-ATSM.
    Journal of Nuclear Medicine 09/2009; 50(8):1332-9. DOI:10.2967/jnumed.109.061879 · 5.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen receptors play a key role in breast cancer development and progression. Kruppel-like factor 6 (KLF6) is a tumour-suppressing protein. The aim of this study was to identify the role of KLF6 inhibition in estrogen receptor(alpha) (ERalpha)-elicited breast cancer development. Protein expression levels were examined by western blot analysis and immunoprecipitation was used to analyse interactions between proteins. An MTT assay was used to study cell proliferation. We found that KLF6 mediates cell growth in ERalpha-positive breast cancer cells through interaction with the c-Src protein. This interaction causes inactivation of the Erk and Akt proteins. These pathways are critical for the proliferation and survival of breast cancer cells. We also established that KLF6 could not mediate cell growth in ERalpha-negative cells. We conclude that KLF6 can modulate ERalpha-mediated cell growth in breast cancer cells. The unique role of KLF6 in mediating cell growth in breast cancer cells opens up the possibility of a new therapeutic strategy for treating breast cancer.
    Molecular and Cellular Biochemistry 09/2009; 335(1-2):29-35. DOI:10.1007/s11010-009-0237-8 · 2.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The antiviral activity of total alkaloids from Commelina communis L. (TAC) against influenza virus A/PR/8/34 (H1N1) was investigated in vitro and in vivo. TAC exhibited an inhibitory action on the growth of influenza virus in Madin-Darby canine kidney cells when added before or after viral infection. In mice infected with influenza virus, orally administered TAC at 8, 16 or 32 mg/kg per day for 6 days significantly increased the survival rate, prolonged the mean survival time and reduced the viral titers in the lung and the lung index, compared with that of the untreated virus control. The results obtained suggest that TAC has a pronounced protective effect against infection by influenza A virus.
    Archives of Virology 09/2009; 154(11):1837-40. DOI:10.1007/s00705-009-0503-9 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki. There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date. This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.
    BMC Genomics 08/2009; 10:290. DOI:10.1186/1471-2164-10-290 · 4.04 Impact Factor
  • The Journal of Urology 04/2009; 181(4):512-512. DOI:10.1016/S0022-5347(09)61446-4 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bluetongue viruses (BTVs) infect primarily domestic cattle and wild ruminants but have never been shown to infect normal human cells. Thus, humans are sero-negative towards BTVs. The selective and differential effects of BTV serotype 10 (BTV-10) infection were investigated with five cell lines including primary human embryo lung fibroblast (HEL) and primary murine embryos fibroblast(MEF), human hepatic carcinoma 3B cell line (Hep-3B), human lung carcinoma cell line (A549) and mouse fibroblast cell line (NIH 3T3). In this study, comparative analyses of differential cytopathic effects (CPEs), survival rates using different Multiplicities of Infection (MOI), ultra-structural changes by transmission electron microscopy, and the preferential cell cycle changes of infected cells by flow cytometry were made among these cells. Detection of the presence of BTV genome and kinetic analysis of virus titers in TCID50 were also made. We provided the first analytical demonstration and evidence that BTV-10 could selectively infect and degrade human cancer cells but not cultured primary normal cells. No CPE or viral mRNAs could be detected within these normal cells, while various degrees of CPE could be found in Hep-3B and A549, as well as in NIH 3T3 under similar conditions. Before death, BTV-infected human cancer cells were directly arrested in the sub-G1 phase and the diversity of BTV infection as shown by the MTT method had significant difference (F = 95.635, p < 0.01). Above results suggested that this viral dose-dependent cytotoxic effect is caused by both effective virion amplification and induced apoptosis. Cellular distinctive transformation status may contribute to the selectivity. Thus, selective degradation of human cancer cells but not normal diploid cells by the newly discovered oncolytic potential of BTV would provide a very attractive approach for cancer therapy in the future.
    Acta Oncologica 01/2008; 47(1):124-34. DOI:10.1080/02841860701403038 · 3.71 Impact Factor