Jing An

Capital Medical University, Peping, Beijing, China

Are you Jing An?

Claim your profile

Publications (38)108.4 Total impact

  • JACC. Cardiovascular imaging 04/2014; 7(4):433. · 14.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a cytokine adjuvant, granulocyte-macrophage colony-stimulating factor (GM-CSF) has been demonstrated to play central roles in the enhancement of the immune response and protection elicited by experimental vaccines. However, in our previous work, the co-administration of GM-CSF produced untoward effects on the immune response induced by a Japanese encephalitis virus DNA vaccine candidate. This study aimed to elucidate the adjuvant roles of GM-CSF in several Flaviviridae virus DNA vaccine candidates. Our results showed that the effects of GM-CSF were diverse: coinoculated GM-CSF caused significant suppression to the dengue virus type 1 and type 2 prM-E DNA vaccinations and influenced protective efficiency against virus challenge. In contrast, GM-CSF showed little effect or an enhancement on the immune response elicited by hepatitis C virus C or E1 DNA vaccine candidates. Notably, these effects of GM-CSF were highly durable. Our results suggested that the adjuvant roles of the GM-CSF plasmid were complex and diverse, ranging from enhancement to suppression, depending on the immunogen of Flaviviridae virus DNA vaccine candidates. Therefore, the application of GM-CSF as a vaccine adjuvant or a therapeutic agent should be evaluated carefully
    Immunology Letters. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of dengue virus (DENV) infection is not completely understood. Endothelial cells may act as a target of the virus and be involved in disease pathogenesis. Therefore, the identification of host cell components involved in DENV replication would provide useful information for better understanding DENV infection. In this study, a significantly decreased level of miR-223 was found in DENV2-infected EAhy926 cells, a human endothelial-like cell line, whereas miR-223 overexpression inhibited DENV2 replication. Furthermore, we identified that miR-223 directly targeted the 3’ untranslated region (3’UTR) of the messenger RNA (mRNA) for microtubule-destabilizing protein stathmin 1 (STMN1), thereby reducing its mRNA and protein levels. The depletion of miR-223 or overexpression of STMN1 enhanced DENV2 replication, whereas the opposite (increased miR-223 or decreased STMN1) suppressed DENV2 replication, indicating that miR-223 down-regulates STMN1 expression by targeting the 3’UTR of the STMN1 gene to inhibit DENV2 replication. Finally, we demonstrated that two transcription factors, C/EBPα and E2F1, are involved in the regulation of miR-223 levels after DENV2 infection in EAhy926 cells. Collectively, our results suggest that miR-223 may act as a novel antiviral factor, which may open an avenue to limit DENV infection.
    Microbes and Infection 01/2014; · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We sought to evaluate the feasibility and accuracy of free-breathing three-dimensional (3D) phase-sensitive inversion-recovery (PSIR) Turbo FLASH sequence for noninvasive assessment of left ventricular myocardial scar in swine models. Nine Chinese minipigs with experimentally induced acute myocardial infarction were studied. At 1 week and the study endpoint 4 weeks after myocardial infarction surgery, the 3D and 2D contrasted cardiac magnetic resonance (CMR) imaging were performed randomly by using a 1.5T clinical MR imaging system. Comparisons of myocardial scar volume (in cubic centimeters), scar transmurality (on a 5 points scale) and image quality (on a 4 points Likert scale) were performed by using the Pearson correlation and Bland-Altman analysis (for myocardial scar volume) or κ statistics (for transmurality) or Wilcoxon signed rank test (for image quality). In 6 of the 9 pigs, all procedures were successfully completed. In these pigs, a total of 48 segments with myocardial scars were detected by both 3D and 2D sequences, and there was good agreement for classification of scar transmurality (κ=0.930). The scar volume determined by triphenyltetrazolium chloride (TTC) staining (3.52±1.40cm(3)) showed a good correlation with both 3D (3.54±1.36cm(3), r=0.957, P=0.003) and 2D sequence (3.53±1.26cm(3), r=0.942, P=0.005) at 4 weeks. And there were good correlation between scar volumes obtained from 3D and 2D techniques (r=0.859, P<0.001) at both time points. Both 3D and 2D images detected a small reduction of scar volume from week 1 to week 4 by a factor of 1.179 and 1.176, respectively. Although slightly more artifacts were observed on 2D PSIR images, the overall image quality was not significantly different between the two sequences (3.17±0.83 for 2D vs. 3.25±0.75 for 3D, P =0.655). The free-breathing 3D PSIR Turbo FLASH sequence enables accurate assessment of left ventricular myocardial scar.
    PLoS ONE 10/2013; 8(10):e78305. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vaccination is the most effective countermeasure for protecting individuals from Japanese encephalitis virus (JEV) infection. There are two types of JEV vaccines currently used in China: the Vero cell-derived inactivated vaccine and the live attenuated vaccine. In this study, we characterized the immune response and protective efficacy induced in mice by the inactivated vaccine, live attenuated vaccine and the DNA vaccine candidate pCAG-JME, which expresses JEV prM-E proteins. We found that the live attenuated vaccine conferred 100% protection and resulted in the generation of high levels of specific anti-JEV antibodies and cytokines. The pCAG-JME vaccine induced protective immunity as well as the live attenuated vaccine. Unexpectedly, immunization with the inactivated vaccine only induced a limited immune response and partial protection, which may be due to the decreased activity of dendritic cells and the expansion of CD4+CD25+Foxp3+ regulatory T cells observed in these mice. Altogether, our results suggest that the live attenuated vaccine is more effective in providing protection against JEV infection than the inactivated vaccine and that pCAG-JME will be a potential JEV vaccine candidate.
    Vaccine 07/2013; · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to prospectively investigate the prevalence of fat deposition in idiopathic dilated cardiomyopathy (DCM) by fat-water separation imaging. An auxiliary aim was to determine the relationship between left ventricular (LV) fat deposition and characteristic myocardial fibrosis, as well as cardiac functional parameters. Idiopathic DCM remains the most common cause of heart failure in young people referred for cardiac transplantation; little is known about the clinical value of fat deposition in DCM. A total of 124 patients with DCM were studied after written informed consent was obtained. The magnetic resonance imaging scan protocols included a series of short-axis LV cine imaging for functional analysis, fat-water separation imaging, and late gadolinium enhancement (LGE) imaging. Fat deposition and fibrosis location were compared to the scar regions on LGE images using a 17-segment model. Statistical comparisons of LV global functional parameters, fibrosis volumes, and fat deposition were carried out using the Pearson correlation, Student t test, and multiple regressions. The patients had a 41.9% (52 of 124) prevalence of positive LGE, and 12.9% (16 of 124) fat deposition prevalence was found in this DCM cohort. The patients with fat deposition had larger LV end-diastolic volume (LVEDV) index (140.8 ± 20.2 ml/m(2) vs. 123.4 ± 15.8 ml/m(2); p < 0.01), larger LV end-systolic volume (LVESV) index (111.3 ± 19.2 vs. 87.0 ± 20.3 ml/m(2); p < 0.01), and decreased LV ejection fraction (LVEF) (21.1 ± 7.1% vs. 30.0 ± 10.7%; p < 0.01). Higher volumes of LGE were found in the group with myocardial fat deposition (18.39 ± 9.0 ml vs. 13.40 ± 6.54 ml; p = 0.001), as well as a higher percentage of LGE/LV mass (19.11 ± 7.78% vs. 13.60 ± 4.58%; p = 0.000). The volume of fat deposition was correlated with scar volume, LVEF, LVEDV index, and LVESV index. Fat deposition is a common phenomenon in DCM, and it is associated with DCM characteristics such as fibrosis volume and LV function.
    JACC. Cardiovascular imaging 07/2013; · 14.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: To investigate the diagnostic value of T1 mapping imaging of evaluating fibrosis in patients with hypertrophic cardiomyopathy (HCM). MATERIALS AND METHODS: 21 subjects with HCM and 18 healthy volunteers underwent conventional late gadolinium enhancement (LGE) imaging and T1 mapping imaging. The region of myocardium in HCM is divided into remote area of LGE, peri-LGE, LGE (halo-like LGE and typical patchy LGE). These regions combined with normal volunteers' myocardium were calculated by the reduced percent of T1 value (RPTV). RESULTS: The RPTV in healthy volunteers was no significant comparing with that in the remote area of LGE in HCM subjects (3.98±3.19 vs. 3.34±2.75, P>0.05). There were significant statistical differences in pairwise among the remote area of LGE, peri-LGE, halo-like LGE and typical patchy LGE in the RPTV (P<0.0001). ROC curves indicated that the T1 mapping imaging has a greater area under the curve comparing with that of traditional LGE imaging (0.975±0.07 vs. 0.753±0.26, P<0.0001). CONCLUSIONS: HCM has a high prevalence of fibrosis and with varying severity. T1 mapping imaging can be a useful method to evaluate the severity of the fibrosis in HCM.
    European journal of radiology 01/2013; · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The major pathogens of hand, foot and mouth disease (HFMD) in Beijing, China from 2007 to 2009 were identified in this study. A total of 186 HFMD cases were included, and 136 cases (73%) were positive for enterovirus (EV). In 2007, 75% (27/36) were Coxsackievirus A16 (CA16) positive and 19% (7/36) were Enterovirus 71 (EV71) positive cases. However, EV71 was the predominant virus in 2008, when 56% (31/55) of the cases were positive for EV71 and 22% (12/55) were positive for CA16. In 2009, EV71 and CA16, with positive rates of 36% (16/45) and 29% (13/45), respectively, were still the major pathogens of HFMD. Phylogenetic analysis revealed that the dominant genotype of EV71 was C4, with co-circulation of genotype A in 2009. The prevalent cluster of the EV71 subgenotype C4 changed over time. A proposed new sublineage of EV71, C4a-2, was the predominant virus associated with the Beijing and nationwide HFMD outbreaks since 2008 and amino acid substitution, which possibly link to the central nervous system tropism of EV71, was found in genotype A viruses. Persistent surveillance of HFMD-associated pathogens is required for predicting potential emerging viruses and related disease outbreaks.
    PLoS ONE 01/2013; 8(2):e56318. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of dengue virus (DV) infection has not been completely defined and change of redox status mediated by depletion of glutathione (GSH) in host cell is a common result of viral infection. Our previous study has demonstrated that DV serotype 2 (DV2) infection alters host intracellular GSH levels, and exogenous GSH inhibits viral production by modulating the activity of NF-κB in HepG2 cells. GSH is the most powerful intracellular antioxidant and involved in viral infections. Thus, this study was to investigate whether DV2 infection can induce alteration in redox balance and effect of GSH on the disease in HepG2 xenografts SCID mice. Our results revealed that mice infected with DV2 showed alterations in oxidative stress by increasing the level of malondialdehyde (MDA), an end product of lipid peroxidation, and GSSG/GSH ratio. DV2-infected mice also showed a decrease in the activity of catalase (CAT) and total superoxide dismutase (T-SOD) in the serum and/or observed organs, especially the liver. Moreover, DV2 infection resulted in elevated serum levels of the cytokines tumor necrosis factor-α and interlukin-6 and obvious histopathological changes in the liver. The administration of exogenous GSH significantly reversed all of the aforementioned pathological changes and prevented significant liver damage. Furthermore, in vitro treatment of HepG2 cells with antioxidants such as GSH inhibited viral entry as well as the production of reactive oxygen species in HepG2 cells. These results suggest that GSH prevents DV2-induced oxidative stress and liver injury in mice by inhibiting proinflammatory cytokine production, and GSH and may be a promising therapeutic agent for prevention of oxidative liver damage during DV infection.
    PLoS ONE 01/2013; 8(1):e55407. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue is an old disease caused by the mosquito-borne dengue viruses (DENVs), which have four antigenically distinct serotypes (DENV1-4). Infection by any of them can cause dengue fever (DF) and/or a more serious disease, that is, dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). In recent decades, incidence of dengue disease has increased 30-fold, putting a third to half of the world's population living in dengue-endemic areas at high infection risk. However, the pathogenesis of the disease is still poorly understood. The virus binding with its host cell is not only a first and critical step in their replication cycle but also a key factor for the pathogenicity. In recent years, there have been significant advances in understanding interactions of DENVs with their target cells such as dendritic cells (DC), macrophages, endothelial cells, and hepatocytes. Although DENVs reportedly attach to a variety of receptors on these cells, consensus DENV receptors have not been defined. In this review, we summarize receptors for DENVs on different cells identified in recent years.
    The Scientific World Journal 01/2013; 2013:684690. · 1.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Public health is still seriously threatened by dengue virus (DENV) and no vaccine against DENV is yet available for clinical use till now. In this study, DNA vaccine candidates encoding DENV serotype 2 (DENV-2) prM/E (premembrane and envelope proteins) and NS1 (non-structural 1 protein) with or without a gene adjuvant, granulocyte-macrophage colony-stimulating factor (GM-CSF), were evaluated in the aspects of immunity and protective efficacy in mice. We constructed three plasmids, pCAG-prM/E (which only expressed DENV2 prM/E), pCAG-prM/E/NS1 (which only expressed DENV2 prM/E/NS1) and pCAG-DG (which co-expressed DENV2 prM/E/NS1 and GM-CSF). The expressions of the recombined plasmids were analyzed by immuno-staining in Vero cells. Antibody responses and neutralization activity of the sera from the mice were assayed by ELISA and plaque reduction neutralization test after immunization with the plasmids. Immunized BALB/c mice were intracerebrally challenged with DENV2 to evaluate protective efficacy of the plasmids. The recombinant plasmids could be efficiently expressed in Vero cells and induced different levels of specific anti-DENV2 immune responses. The immunized mice were partially protected. The highest survival rate was observed in the pCAG-DG group although the anti-DENV2 titer and neutralization antibody titer were not the highest among the three groups. Our data suggested that pCAG-DG offered better protection against DENV2 infection.
    Molecular Immunology 12/2012; 54(2):109-114. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: To evaluate the feasibility of free-breathing three-dimensional (3D) phase sensitive inversion recovery (PSIR) Turbo FLASH late gadolinium enhancement (LGE) magnetic resonance images (MRI) on left ventricular scar in patients with coronary artery disease (CAD) compared with clinically established breathhold two-dimensional (2D) PSIR Turbo FLASH images. MATERIALS AND METHODS: In 58 consecutive patients with confirmed CAD, LGE MRI using the two sequences have been acquired. Image quality was graded on a four-point scale according to the image appearance. Qualitative evaluation including the distribution area and the transmural extent of the scar based on the American Heart Association's (AHA's) 17-segment model was performed in both of 2D and 3D images. The scar volumes were compared quantitatively between 2D and 3D images. RESULTS: A total of 51 individuals were used for final statistical analysis. No differences were noted in image quality (P = 0.80), scar distribution area (P = 0.17), and scar transmural extent (P = 0.20) between 3D and 2D images. There was strong correlation in scar volume between the 3D and 2D results (r = 0.940; P < 0.001; Y = 0.298 + 1.251X, R(2) = 0.876). But the scar volume derived from 3D images was significantly larger than that derived from 2D images (2D versus 3D, 20.08 ± 9.41 cm(3) versus 25.41 ± 12.57 cm(3) , t = -7.60; P < 0.001). The trend toward a larger scar volume identified by 3D method was indicated through Bland-Altman analysis. CONCLUSION: Free-breathing 3D PSIR Turbo FLASH imaging is another feasible method to identify left ventricular myocardial scar in patients with CAD and detects more scar volume compared with breathhold 2D PSIR Turbo FLASH imaging. J. Magn. Reson. Imaging 2012;. © 2012 Wiley Periodicals, Inc.
    Journal of Magnetic Resonance Imaging 12/2012; · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The activation of hepatic stellate cells (HSCs) is closely associated with liver fibrosis in chronic hepatitis B virus (HBV) infection. However, the molecular mechanisms leading to HSC activation remain unclear. It has been reported that the platelet-derived growth factor-B (PDGF-B)/PDGF receptor-β (PDGFR-β) signaling pathway is involved in this process. Thus, we investigated whether HBV and its protein contribute to HSC proliferation by the PDGF-B/PDGFR-β signaling pathway. HBV particles were purified from the supernatant of HepG2.2.15 cells by ultracentrifugation and the cell lines carrying HBV preS, e, c or x genes were obtained. After incubation with HBV particles or co-cultured with the cell lines expressed in the viral protein, the proliferation of LX-2 cells, an HSC cell line, were detected by flow cyto-metry and real-time PCR and the expression of molecules related to the PDGF-B/PDGFR-β signaling pathway were further measured. Our results indicated that HBV particles, c and x proteins promoted LX-2 proliferation and increased the mRNA levels of PDGF-B, PDGFR-β, collagen-I and α-smooth muscle actin (α-SMA), as well as the phosphorylation of PDGFR-β; however, the expression protein levels of PDGF-B and PDGFR-β remained unchanged. In conclusion, HBV particles and HBV c and x proteins promote HSC proliferation and fibrogenesis in vitro and the PDGF-B/PDGFR-β signaling pathway is important in this process.
    International Journal of Molecular Medicine 10/2012; · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the adjuvant effect of granulocyte macrophage colony stimulating factor (GM-CSF) in Flaviviridae virus DNA vaccines. After DNA immunization, the antibody levels of serum from mice were detected by ELISA and indirect immunofluorescence assay. Co-immunization of GM-CSF suppressed the immune responses induced by DV1 and DV2 candidate vaccines whereas enhanced the immune response induced by HCV C and E1 DNA vaccines. As genetic adjuvant for DNA vaccines, GM-CSF might display complex diversity on the immune responses: an augmentation or suppression due to different immunogens. Therefore, GM-CSF should be used with some cautions in clinic.
    Bing du xue bao = Chinese journal of virology / [bian ji, Bing du xue bao bian ji wei yuan hui] 05/2012; 28(3):207-12.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony-stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF.
    PLoS ONE 01/2012; 7(4):e34602. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE To prospectively investigate the prevalence of fat deposition in dilated cardiomyopathy (DCM) by fat-water separation imaging. An auxiliary aim was to determine the relationship between LV fat deposition and characteristic myocardial fibrosis, as well as cardiac functional parameters. METHOD AND MATERIALS Forty-eight patients with DCM were scanned on a 1.5T MR scanner (MAGNETOM Avanto, Siemens, Germany) after written informed consent was obtained. The MR scan protocols included a series of short-axis LV cine imaging for functional analysis, fat-water separation imaging using VARPRO, and late gadolinium enhanced (LGE) imaging for fibrosis.. Fat-water separation imaging was covered the entire LV myocardium. Fat deposition and fibrosis location were compared to the scar regions on LGE images using 17-segment model. Statistical comparisons of LV global functional parameters, fibrosis volumes, and fat deposition were carried out using the Pearson correlation, student t test and multiple regressions. RESULTS A fat deposition prevalence of 29.2% (14/48) was found in areas of DCM. The patients with fat deposition had larger myocardial fibrosis (27.0 ± 15.1cm3 vs. 12.8 ± 6.1cm3; P<0.01) , larger LVEDV (267.8±48.8ml vs.201.6±46.5,P<0.01) and decreased LV ejection fraction (19.5% ±8.4 vs. 29.0% ± 12.1; P<0.01). The volume of fat deposition was correlated with scar volume, LV ejection fraction, LV end-diastolic volume index, and LV end-systolic volume index. CONCLUSION Fat deposition is quite a common phenomenon in DCM. And it is associated with DCM characteristics such as fibrosis volume and LV function. CLINICAL RELEVANCE/APPLICATION Fat-water separation imaging using VARPRO can demostrate fat deposition in dilated cardiomyopathy
    Radiological Society of North America 2011 Scientific Assembly and Annual Meeting; 11/2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE The aim of this study was to use an “one-stop” non-invasive imaging examination-MRI to evaluate the feasibility and safety of aBM-MNC transplantation in patients with acute myocardial infarction(AMI) undergoing percutaneous coronary intervention. METHOD AND MATERIALS We did a randomised, double-blind, placebo-controlled study in 60 patients (male=43, female=17, age 52.18±4.98y) with AMI. The patients were randomly divided into 2 groups(group A: PCI+ aBM-MNC, group B :PCI only). Preoperative global left ventricular functions and scar tissue were measured by MRI. The therapeutic effects were assessed by MRI six-month after aBM-MNC transplantation. RESULTS All the patients were treated without major complications. There is no evidence of new ventricular arrhythmia or neoplasia. The LVEF was improved 28.5% in group A, while 18.4% in group B(P<0.01),LVEDV/m2 and LVESV/m2 were decreased by 21.15±3.96ml/m2 and 27.14±4.48, respectively , which were significantly different from that in group B [5.85±6.18 ml(P=0.08) and 9.18±4.84(P=0.04)]. The cardiac output(CO),cardiac index(CI) and cardiac mass(CM) didn’t show significant difference between the two groups. Compared with group B, aBM-MNC group was associated with no significant reduction in myocardial infarct size (15.3% vs. 12.7%, p=0.51) . CONCLUSION Comprehensive in vivo CMR reveals reversed remodeling and improved systolic function and scar characteristics after aBM-MNC transplantation. PCI+aBM-MNC transplantation can lead to comparable improvements of left ventricle in acute myocardial infaction. CLINICAL RELEVANCE/APPLICATION PCI+aBM-MNC transplantation can be one candidate treatment for acute myocardial infarction when possible.
    Radiological Society of North America 2011 Scientific Assembly and Annual Meeting; 11/2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Waardenburg syndrome (WS) is an auditory-pigmentary disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. PAX3 and SOX10 are two transcription factors that can activate the expression of microphthalmia-associated transcription factor (MITF), a critical transcription factor for melanocyte development. Mutations of PAX3 are associated with WS1 and WS3, while mutations of SOX10 cause WS2 and WS4. Recently, we identified some novel WS-associated mutations in PAX3 and SOX10 in a cohort of Chinese WS patients. Here, we further identified an E248fsX30 SOX10 mutation in a family of WS2. We analyzed the subcellular distribution, expression and in vitro activity of two PAX3 mutations (p.H80D, p.H186fsX5) and four SOX10 mutations (p.E248fsX30, p.G37fsX58, p.G38fsX69 and p.R43X). Except H80D PAX3, which retained partial activity, the other mutants were unable to activate MITF promoter. The H80D PAX3 and E248fsX30 SOX10 were localized in the nucleus as wild type (WT) proteins, whereas the other mutant proteins were distributed in both cytoplasm and nucleus. Furthermore, E248fsX30 SOX10 protein retained the DNA-binding activity and showed dominant-negative effect on WT SOX10. However, E248fsX30 SOX10 protein seems to decay faster than the WT one, which may underlie the mild WS2 phenotype caused by this mutation.
    Human Genetics 10/2011; 131(3):491-503. · 4.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dengue is one of the most important mosquito-borne viral diseases. In past years, although considerable effort has been put into the development of a vaccine, there is currently no licensed dengue vaccine. In this study, we constructed DNA vaccines that carried the prM-E-NS1 genes of dengue virus serotype 1 (DV1) with or without the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, an attractive DNA vaccine adjuvant. Immunization with the plasmid pCAG-DV1/E/NS1, which expresses viral prM-E-NS1, or the bicistronic plasmid pCAG-DV1-GM, which co-expresses viral prM-E-NS1 and GM-CSF, resulted in long-term IgG response, high levels of splenocyte-secreted interferon-γ and interleukin-2, strong cytotoxic T lymphocyte activity and sufficient protection in the DV1-challenged mice. This suggested that both humoral and cellular immune responses were induced by the immunizations and that they played important roles in protection against the DV1 challenge. Interestingly, the magnitude, quality and protective capacity of the immune responses induced by immunization with pCAG-DV1/E/NS1 or pCAG-DV1-GM seemed stronger than those induced by pCAG-DV1/E (expressing viral prM-E alone). Taken together, we demonstrated that prM/E plus NS1 would be a suitable solution for the development of a DNA vaccine against DV.
    Vaccine 01/2011; 29(4):763-71. · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet radiation A (UVA)-induced oxidative stress is recognized as an important factor in the development of skin carcinogenesis. Resveratrol is demonstrated to possess remarkable antioxidant activity in the organism. The aim of this study was to investigate the protective role of resveratrol in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism of the translocation of NF-E2-related factor-2 (Nrf2) into the nucleus. The HaCaT cells were UVA-irradiated and the effects of resveratrol on cell viability, reactive oxygen species generation and membrane-lipid peroxidation were measured. The proteins and mRNA of Nrf2 and Kelch-like-ECH-associated protein 1 (Keap1) were determined by immunofluorescence staining, Western blot and quantitative PCR, respectively. UVA exposure led to a decrease in viability and an increase in reactive oxygen species generation in HaCaT cells. Resveratrol could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, resveratrol increased the level of Nrf2 protein and facilitated Nrf2 accumulation in the nucleus; as a result, the activity of antioxidant enzymes was also upregulated. The main finding was that Keap1 protein, a repressor of Nrf2 in the cytoplasm, was clearly decreased by resveratrol treatment 12h and beyond though the level of Keap1 mRNA still increased. Our results suggest that resveratrol can degrade Keap1 protein and facilitate Nrf2 accumulation in the nucleus, thereby protecting HaCaT cells from UVA-induced oxidative stress. Resveratrol could be a more useful natural medicine for the protection of epidermal cells from UVA-induced damage.
    European journal of pharmacology 10/2010; 650(1):130-7. · 2.59 Impact Factor

Publication Stats

277 Citations
108.40 Total Impact Points

Institutions

  • 2007–2014
    • Capital Medical University
      • School of Basic Medical Sciences
      Peping, Beijing, China
  • 2010
    • Capital University of Integrative Medicine
      China, Maine, United States
  • 2003–2010
    • Third Military Medical University
      • Department of Microbiology
      Chongqing, Chongqing Shi, China