Jing Zhao

Peking Union Medical College Hospital, Peping, Beijing, China

Are you Jing Zhao?

Claim your profile

Publications (26)58.43 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Link prediction aims to uncover missing links or predict the emergence of future relationships according to the current networks structure. Plenty of algorithms have been developed for link prediction in unweighted networks, with only a very few of them having been extended to weighted networks. Thus far, how to predict weights of links is important but rarely studied. In this Letter, we present a reliable-route-based method to extend unweighted local similarity indices to weighted indices and propose a method to predict both the link existence and link weights accordingly. Experiments on different real networks suggest that the weighted resource allocation index has the best performance to predict the existence of links, while the reliable-route-based weighted resource allocation index performs noticeably better on weight prediction. Further analysis shows a strong correlation for both link prediction and weight prediction: the larger the clustering coefficient, the higher the prediction accuracy.
    08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computational methods play an important role in the disease genes prioritisation by integrating many kinds of data sources such as gene expression, functional annotations and protein-protein interactions. However, the existing methods usually perform well in predicting highly linked genes, whereas they work quite poorly for loosely linked genes. Motivated by this observation, a degree-adjusted strategy is applied to improve the algorithm that was proposed earlier for the prediction of disease genes from gene expression and protein interactions. The authors also showed that the modified method is good at identifying loosely linked disease genes and the overall performance gets enhanced accordingly. This study suggests the importance of statistically adjusting the degree distribution bias in the background network for network-based modelling of complex diseases.
    IET Systems Biology 04/2014; 8(2):41-46. · 1.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The estrogen receptor 1 (ESR1) and Chromosome 6 Open Reading Frame 97 (C6orf97) gene polymorphisms were earlier reported to be associated with osteoporosis in the European cohort. The aim of this study was to investigate the association of four single nucleotide polymorphisms (SNP) with bone mineral density (BMD), fracture, vertebral fracture, bone turnover or 25-hydroxyvitamin D [25(OH)D] in 1,753 randomly selected postmenopausal women in China. Vertebral fracture, BMD of lumbar spine (2-4), femoral neck and total hip were measured respectively. Serum N-terminal procollagen of type 1 collagen (P1NP), β-isomerized type I collagen C-telopeptide breakdown products (β-CTX) and 25(OH)D3 were also determined. Binary logistic regression revealed significant associations between fracture risk with rs1999805 (P = 0.041, OR 1.633, 95 %CI 1.020-2.616) and rs6929137 (P = 0.005, OR 1.932, 95 %CI 1.226-3.045) in recessive model. Significant association was also observed between vertebral fracture risk and rs1038304 (P = 0.039, OR 0.549, 95 %CI 0.311-0.969) in recessive model. Liner regression analyses showed that only the CC group of rs4870044 was significantly associated with total hip in dominant model (P = 0.034). Our findings suggest that ESR1 and C6orf97 gene polymorphism is associated with fracture and vertebral fracture risk in Chinese postmenopausal women.
    Molecular Biology Reports 01/2014; · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many complex networks demonstrate a phenomenon of striking degree correlations, i.e., a node tends to link to other nodes with similar (or dissimilar) degrees. From the perspective of degree correlations, this paper attempts to characterize topological structures of urban street networks. We adopted six urban street networks (three European and three North American), and converted them into network topologies in which nodes and edges respectively represent individual streets and street intersections, and compared the network topologies to three reference network topologies (biological, technological, and social). The urban street network topologies (with the exception of Manhattan) showed a consistent pattern that distinctly differs from the three reference networks. The topologies of urban street networks lack striking degree correlations in general. Through reshuffling the network topologies towards for example maximum or minimum degree correlations while retaining the initial degree distributions, we found that all the surrogate topologies of the urban street networks, as well as the reference ones, tended to deviate from small world properties. This implies that the initial degree correlations do not have any positive or negative effect on the networks' performance or functions. Keywords: Scale free, small world, rewiring, rich club effect, reshuffle, and complex networks
    Environment and Planning B Planning and Design 08/2013; · 0.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Huang-Lian-Jie-Du-Tang (HLJDT) is a classic TCM formula to clear "heat" and "poison" that exhibits antirheumatic activity. Here we investigated the therapeutic mechanisms of HLJDT at protein network level using bioinformatics approach. It was found that HLJDT shares 5 target proteins with 3 types of anti-RA drugs, and several pathways in immune system and bone formation are significantly regulated by HLJDT's components, suggesting the therapeutic effect of HLJDT on RA. By defining an antirheumatic effect score to quantitatively measure the therapeutic effect, we found that the score of each HLJDT's component is very low, while the whole HLJDT achieves a much higher effect score, suggesting a synergistic effect of HLJDT achieved by its multiple components acting on multiple targets. At last, topological analysis on the RA-associated PPI network was conducted to illustrate key roles of HLJDT's target proteins on this network. Integrating our findings with TCM theory suggests that HLJDT targets on hub nodes and main pathway in the Hot ZENG network, and thus it could be applied as adjuvant treatment for Hot-ZENG-related RA. This study may facilitate our understanding of antirheumatic effect of HLJDT and it may suggest new approach for the study of TCM pharmacology.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:245357. · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatoid arthritis (RA) is a chronic disease that affects the joints, often those in a person's wrists, fingers, and feet. In contrast to FDA-approved anti-RA drugs, Tripterygium wilfordii Hook F (TwHF), a traditional Chinese medicine (TCM), featured as multi-targeting, have been acknowledged with notable anti-RA effects although the pharmacology is unclear. In this work, we investigated the therapeutic mechanisms of TwHF at protein network level. First, RA-associated genes, the protein targets of FDA approved anti-RA drugs and TwHF were collected. Then we mapped the protein targets of TwHF on the drug-target network of FDA approved anti-RA drugs and KEGG RA pathway, based on these information and resources. Furthermore, we quantitatively analyzed the anti-rheumatic effect of TwHF and compared it with those of FDA approved anti-RA drugs by a network based anti-rheumatic effect score. Our study suggests that TwHF may function as a combination of disease-modifying anti-rheumatic drug and non-steroidal anti-inflammatory drug and its anti-rheumatic power could be comparable with that of anti-inflammatory agents. This study may facilitate our understanding of the RA treatment by TwHF from the perspective of network systems and it may suggest new approach for the study of TCM pharmacology.
    Systems Biology (ISB), 2013 7th International Conference on; 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the growth of aging population all over the world, a rising incidence of Alzheimer's disease (AD) has been recently observed. In contrast to FDA-approved western drugs, herbal medicines, featured as abundant ingredients and multi-targeting, have been acknowledged with notable anti-AD effects although the mechanism of action (MOA) is unknown. Investigating the possible MOA for these herbs can not only refresh but also extend the current knowledge of AD pathogenesis. In this study, clinically tested anti-AD herbs, their ingredients as well as their corresponding target proteins were systematically reviewed together with applicable bioinformatics resources and methodologies. Based on above information and resources, we present a systematically target network analysis framework to explore the mechanism of anti-AD herb ingredients. Our results indicated that, in addition to the binding of those symptom-relieving targets as the FDA-approved drugs usually do, ingredients of anti-AD herbs also interact closely with a variety of successful therapeutic targets related to other diseases, such as inflammation, cancer and diabetes, suggesting the possible cross-talks between these complicated diseases. Furthermore, pathways of Ca(2+) equilibrium maintaining upstream of cell proliferation and inflammation were densely targeted by the anti-AD herbal ingredients with rigorous statistic evaluation. In addition to the holistic understanding of the pathogenesis of AD, the integrated network analysis on the MOA of herbal ingredients may also suggest new clues for the future disease modifying strategies.
    Briefings in Bioinformatics 08/2012; · 5.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Matrilin3 gene (MATN3) encodes an extracellular matrix protein, which modulates chondrocyte differentiation. The aim of this study was to test for association of MATN3 polymorphisms with bone mineral density (BMD), fracture, vertebral fracture, bone turnover or 25-hydroxyvitamin D [25(OH)D] in postmenopausal women. A community-based population of 1488 postmenopausal women was randomly selected in Beijing. The history of fracture and vertebral fracture was obtained via questionnaire and vertebral X-ray respectively. BMD of lumbar spine (2-4), femoral neck and total hip were measured by dual energy X-ray absorptiometry. Serum N-terminal procollagen of type 1 collagen (P1NP), β-isomerized type I collagen C-telopeptide breakdown products (β-CTX) and 25(OH)D were quantified. Binary logistic regression revealed that Haplotype-4 was significantly associated with vertebral fracture risk in both additive model (p=0.023, OR=1.521) and dominant model (p=0.028, OR=1.623). The significance remained after 10,000 permutation tests to correct multiple testing (p=0.042). Re-selected age matched vertebral fracture case-control groups revealed similar associations in additive model (p=0.014, OR=1.927, 95%CI=1.142-3.253) and in dominant model (p=0.011, OR=2.231, 95%CI=1.200-4.148). However, no significant association was found between MATN3 polymorphisms and serum β-CTX, P1NP, 25(OH)D levels, or BMD. In linear regression, Haplotype-2 approached marginal significance in association with femoral neck BMD T-score (p=0.050), but this would account for only 0.2% of BMD variation in our sample. This study suggests that Haplotype-4 of MATN3 is associated with vertebral fracture risk independent of BMD in Chinese postmenopausal women. Efforts should be made to replicate our finding in other, similar and ethnically diverse, populations.
    Bone 01/2012; 50(4):917-24. · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Astragaloside IV (AGS-IV) is a main active ingredient of Astragalus membranaceus Bunge, a medicinal herb used for cardiovascular diseases (CVD). In this work, we investigated the therapeutic mechanisms of AGS-IV at a network level by computer-assisted target identification with the in silico inverse docking program (INVDOCK). Targets included in the analysis covered all signaling pathways thought to be implicated in the therapeutic actions of all CVD drugs approved by US FDA. A total of 39 putative targets were identified. Three of these targets, calcineurin (CN), angiotensin-converting enzyme (ACE), and c-Jun N-terminal kinase (JNK), were experimentally validated at a molecular level. Protective effects of AGS-IV were also compared with the CN inhibitor cyclosporin A (CsA) in cultured cardiomyocytes exposed to adriamycin. Network analysis of protein-protein interactions (PPI) was carried out with reference to the therapeutic profiles of approved CVD drugs. The results suggested that the therapeutic effects of AGS-IV are based upon a combination of blocking calcium influx, vasodilation, anti-thrombosis, anti-oxidation, anti-inflammation and immune regulation.
    PLoS ONE 01/2012; 7(9):e44938. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate serum N-aminoterminal propeptide of type I collagen (P1NP), C-terminal telopeptide of type I collagen (β-CTX), and vitamin D status in healthy Chinese postmenopausal women. The study was also designed to investigate their possible relationships with osteoporosis phenotypes. A community-based population of 1,724 postmenopausal women in Beijing was randomly selected. Serum bone turnover markers and 25-hydroxyvitamin D [25(OH)D] were tested by an automated Roche electrochemiluminescence system. Dual-energy x-ray absorptiometry was used to measure bone mineral density (BMD). The mean (SD) values of serum β-CTX and P1NP were 0.439 (0.210) and 56.7 (27.9) ng/mL, respectively. The 25(OH)D level of postmenopausal women in Beijing was remarkably low (13.2 ± 5.4 ng/mL). Serum β-CTX and P1NP levels were negatively correlated with BMDs of lumbar spine, femoral neck, and total hip (all P < 0.01). The cubic regression model better fitted the relationships of BMD and bone turnover markers. Serum β-CTX levels were significantly higher in women with sustained osteoporotic fracture or vertebral fracture (P = 0.006 and 0.012, respectively). No association between P1NP and fracture or vertebral fracture was detected. The same situation applied to 25(OH)D. 25(OH)D was negatively correlated with β-CTX and P1NP (r = -0.073 and -0.088, P = 0.002 and <0.001, respectively). Serum β-CTX and P1NP levels were negatively correlated with BMD. β-CTX was significantly higher in postmenopausal women with sustained fracture or vertebral fracture. Vitamin D deficiency was highly prevalent in postmenopausal women in Beijing.
    Menopause (New York, N.Y.) 07/2011; 18(11):1237-43. · 3.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Huang-Lian-Jie-Du-Tang (HLJDT) is a traditional Chinese medicine with anti-inflammatory use. In the present study, the effects of its component herbs and pure components were observed on eicosanoid generation to find out the contributory components and their precise targets on arachidonic acid (AA) cascade. By monitoring leukotriene B(4) (LTB(4)), 5-hydroxyeicosatetraenoic acid (5-HETE), and 12-hydroxy-5,8,10-heptadecatrienoic acid (12-HHT), we compared the effects of HLJDT, HLJDT free of one or two component herbs, and water extract of four single component herbs of HLJDT (Rhizoma coptidis, Radix scutellariae, Cortex phellodendri and Fructus gardeniae) on eicosanoid generation in rat elicited peritoneal macrophages. In addition, thirteen pure compounds from HLJDT (baicalin, baicalein, wogonoside, wogonin, berberine, magnoflorine, phellodendrine, coptisine, palmatine, jateorrhizine, crocin, chlorogenic acid, and geniposide) were tested in the macrophages. Furthermore, the efficacies of these thirteen compounds were evaluated on cell-free purified enzymes: leukotriene A(4) hydrolase (LTA(4)H), 5-, 15-lipoxygenase (5-, 15-LO), and cyclo-oxygenase-1/2 (COX-1/2). Moreover, the possible synergetic effect on LO pathway derived LTB(4) generation between the active components was also tested in rat peritoneal macrophages. Our experiments showed that Rhizoma coptidis and Radix scutellariae were responsible for the suppressive effect of HLJDT on eicosanoid generation. Some of the pure components including baicalein, baicalin, wogonoside, wogonin, coptisine, and magnoflorine inhibited eicosanoid generation in rat macrophages via LO pathway of AA cascade. Further experiments on cell-free purified enzymes confirmed that Radix scutellariae derived baicalein and baicalin showed significant inhibition on 5-LO and 15-LO, while Rhizoma coptidis derived coptisine showed medium inhibition on LTA(4)H. On the other hand, no significant inhibition of thirteen components on COX-1/2 was observed. Moreover, the slight synergetic inhibition on LTB(4) between baicalein and coptisine was proved in the rat peritoneal macrophages. Baicalein and coptisine, the active components of HLJDT, for the first time are found to interfere with arachidonic acid cascade via inhibition on different points of LO pathway. This finding makes the mechanism of HLJDT clearer and achieves its safer therapeutic application.
    Journal of ethnopharmacology 04/2011; 135(2):561-8. · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver regeneration (LR) is of great clinical significance in various liver-associated diseases. LR proceeds along a sequence of three distinct phases: priming/initiation, proliferation, and termination. Compared with the recognition of the first two phases, little is known about LR termination and structure/function reorganization. A combination of "omics" techniques, along with bioinformatics, may provide new insights into the molecular mechanism of the late-phase LR. Gene, protein, and metabolite profiles of the rat liver were determined by cDNA microarray, two-dimensional electrophoresis, and HPLC-MS analysis. Pathway enrichment analysis was performed to identify the pathways: 427 differentially expressed genes extracted from the microarray experiment revealed two expression patterns representing the early and late phase of LR. Functionally, the genes expressing at a higher level at the early phase than at the late phase were mainly involved in the response to stress, proliferation, and resistance to apoptosis, while those expressing at a lower level at the early phase than at the late phase were mainly engaged in lipid metabolism. Compared with the sham-operation control (SH) group, 5 proteins in the 70% partial hepatectomy (70%PHx) group were upregulated at the protein level, and 3 proteins were downregulated at 168 h after the 70%PHx. E-FABP, an upregulated fatty acid binding protein, was found to be involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The metabolomic data confirmed the enhancement of lipid metabolism by the detection of the intermediate and final metabolites. We've concluded that increased lipid metabolism and activated PPAR signaling pathways play important roles in late-phase LR.
    Journal of Proteome Research 02/2011; 10(3):1179-90. · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To target complex, multi-factorial diseases more effectively, there has been an emerging trend of multi-target drug development based on network biology, as well as an increasing interest in traditional Chinese medicine (TCM) that applies a more holistic treatment to diseases. Thousands of years' clinic practices in TCM have accumulated a considerable number of formulae that exhibit reliable in vivo efficacy and safety. However, the molecular mechanisms responsible for their therapeutic effectiveness are still unclear. The development of network-based systems biology has provided considerable support for the understanding of the holistic, complementary and synergic essence of TCM in the context of molecular networks. This review introduces available sources and methods that could be utilized for the network-based study of TCM pharmacology, proposes a workflow for network-based TCM pharmacology study, and presents two case studies on applying these sources and methods to understand the mode of action of TCM recipes.
    Briefings in Bioinformatics 07/2010; 11(4):417-30. · 5.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver is the largest internal organ in the body that takes central roles in metabolic homeostasis, detoxification of various substances, as well as in the synthesis and storage of nutrients. To fulfill these complex tasks, thousands of biochemical reactions are going on in liver to cope with a wide range of foods and environmental variations, which are densely interconnected into an intricate metabolic network. Here, the first human liver-specific metabolic network was reconstructed according to proteomics data from Chinese Human Liver Proteome Project (CNHLPP), and then investigated in the context of the genome-scale metabolic network of Homo sapiens. Topological analysis shows that this organ-specific metabolic network exhibits similar features as organism-specific networks, such as power-law degree distribution, small-world property, and bow-tie structure. Furthermore, the structure of liver network exhibits a modular organization where the modules are formed around precursors from primary metabolism or hub metabolites from derivative metabolism, respectively. Most of the modules are dominated by one major category of metabolisms, while enzymes within same modules have a tendency of being expressed concertedly at protein level. Network decomposition and comparison suggest that the liver network overlays a predominant area in the global metabolic network of H. sapiens genome; meanwhile the human network may develop extra modules to gain more specialized functionality out of liver. The results of this study would permit a high-level interpretation of the metabolite information flow in human liver and provide a basis for modeling the physiological and pathological metabolic states of liver.
    Journal of Proteome Research 02/2010; 9(4):1648-58. · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efforts in phylogenomics have greatly improved our understanding of the backbone tree of life. However, due to the systematic error in sequence data, a sequence-based phylogenomic approach leads to well-resolved but statistically significant incongruence. Thus, independent test of current phylogenetic knowledge is required. Here, we have devised a distance-based strategy to reconstruct a highly resolved backbone tree of life, on the basis of the genome context networks of 195 fully sequenced representative species. Along with strongly supporting the monophylies of three superkingdoms and most taxonomic sub-divisions, the derived tree also suggests some intriguing results, such as high G+C gram positive origin of Bacteria, classification of Symbiobacterium thermophilum and Alcanivorax borkumensis in Firmicutes. Furthermore, simulation analyses indicate that addition of more gene relationships with high accuracy can greatly improve the resolution of the phylogenetic tree. Our results demonstrate the feasibility of the reconstruction of highly resolved phylogenetic tree with extensible gene networks across all three domains of life. This strategy also implies that the relationships between the genes (gene network) can define what kind of species it is.
    PLoS ONE 02/2008; 3(10):e3357. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Species of the genus Streptomyces are major bacteria responsible for producing most natural antibiotics. Streptomyces coelicolor A3(2) and Streptomyces avermitilis were sequenced in 2002 and 2003, respectively. Two-component signal transduction systems (TCSs), consisting of a histidine sensor kinase (SK) and a cognate response regulator (RR), form the most common mechanism of transmembrane signal transduction in prokaryotes. TCSs in S. coelicolor A3(2) have been analyzed in detail. Here, we identify and classify the SK and RR of S. avermitilis and compare the TCSs with those of S. coelicolor A3(2) by computational approaches. Phylogenetic analysis of the cognate SK-RR pairs of the two species indicated that the cognate SK-RR pairs fall into four classes according to the distribution of their orthologs in other organisms. In addition to the cognate SK-RR pairs, some potential partners of non-cognate SK-RR were found, including those of unpaired SK and orphan RR and the cross-talk between different components in either strain. Our study provides new clues for further exploration of the molecular regulation mechanism of streptomycetes with industrial importance.
    Acta Biochimica et Biophysica Sinica 06/2007; 39(5):317-25. · 1.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exploring the structural topology of genome-based large-scale metabolic network is essential for investigating possible relations between structure and functionality. Visualization would be helpful for obtaining immediate information about structural organization. In this work, metabolic networks of 75 organisms were investigated from a topological point of view. A spread bow-tie model was proposed to give a clear visualization of the bow-tie structure for metabolic networks. The revealed topological pattern helps to design more efficient algorithm specifically for metabolic networks. This coarsegrained graph also visualizes the vulnerable connections in the network, and thus could have important implication for disease studies and drug target identifications. In addition, analysis on the reciprocal links and main cores in the GSC part of bow-tie also reveals that the bow-tie structure of metabolic networks has its own intrinsic and significant features which are significantly different from those of random networks.
    Chinese Science Bulletin 03/2007; 52(8):1036-1045. · 1.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The architecture of biological networks has been reported to exhibit high level of modularity, and to some extent, topological modules of networks overlap with known functional modules. However, how the modular topology of the molecular network affects the evolution of its member proteins remains unclear. In this work, the functional and evolutionary modularity of Homo sapiens (H. sapiens) metabolic network were investigated from a topological point of view. Network decomposition shows that the metabolic network is organized in a highly modular core-periphery way, in which the core modules are tightly linked together and perform basic metabolism functions, whereas the periphery modules only interact with few modules and accomplish relatively independent and specialized functions. Moreover, over half of the modules exhibit co-evolutionary feature and belong to specific evolutionary ages. Peripheral modules tend to evolve more cohesively and faster than core modules do. The correlation between functional, evolutionary and topological modularity suggests that the evolutionary history and functional requirements of metabolic systems have been imprinted in the architecture of metabolic networks. Such systems level analysis could demonstrate how the evolution of genes may be placed in a genome-scale network context, giving a novel perspective on molecular evolution.
    BMC Bioinformatics 01/2007; 8. · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the main tasks of post-genomic informatics is to systematically investigate all molecules and their interactions within a living cell so as to understand how these molecules and the interactions between them relate to the function of the organism, while networks are appropriate abstract description of all kinds of interactions. In the past few years, great achievement has been made in developing theory of complex networks for revealing the organizing principles that govern the formation and evolution of various complex biological, technological and social networks. This paper reviews the accomplishments in constructing genome-based metabolic networks and describes how the theory of complex networks is applied to analyze metabolic networks.
    Chinese Science Bulletin 01/2006; 51(13):1529-1537. · 1.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exploration of the structural topology and the organizing principles of genome-based large-scale metabolic networks is essential for studying possible relations between structure and functionality of metabolic networks. Topological analysis of graph models has often been applied to study the structural characteristics of complex metabolic networks. In this work, metabolic networks of 75 organisms were investigated from a topological point of view. Network decomposition of three microbes (Escherichia coli, Aeropyrum pernix and Saccharomyces cerevisiae) shows that almost all of the sub-networks exhibit a highly modularized bow-tie topological pattern similar to that of the global metabolic networks. Moreover, these small bow-ties are hierarchically nested into larger ones and collectively integrated into a large metabolic network, and important features of this modularity are not observed in the random shuffled network. In addition, such a bow-tie pattern appears to be present in certain chemically isolated functional modules and spatially separated modules including carbohydrate metabolism, cytosol and mitochondrion respectively. The highly modularized bow-tie pattern is present at different levels and scales, and in different chemical and spatial modules of metabolic networks, which is likely the result of the evolutionary process rather than a random accident. Identification and analysis of such a pattern is helpful for understanding the design principles and facilitate the modelling of metabolic networks.
    BMC Bioinformatics 01/2006; 7:386. · 3.02 Impact Factor

Publication Stats

230 Citations
58.43 Total Impact Points

Institutions

  • 2011–2012
    • Peking Union Medical College Hospital
      • Department of Obstetrics and Gynecology
      Peping, Beijing, China
  • 2010–2012
    • Second Military Medical University, Shanghai
      Shanghai, Shanghai Shi, China
  • 2007–2010
    • Shanghai Center for Bioinformation Technology
      Shanghai, Shanghai Shi, China
  • 2007–2008
    • Northeast Institute of Geography and Agroecology
      • • Center for Bioinformatics
      • • Graduate School
      Beijing, Beijing Shi, China
  • 2006–2007
    • Shanghai Jiao Tong University
      Shanghai, Shanghai Shi, China
  • 2004–2005
    • Shanghai University
      Shanghai, Shanghai Shi, China