J S Yang

University of Pennsylvania, Philadelphia, PA, United States

Are you J S Yang?

Claim your profile

Publications (10)77.23 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) is a vectorborne pathogen that induces brain inflammation and death. Recently, confirmed cases of infection and deaths have occurred in the United States Mid-Atlantic region. In this study, a DNA vaccine encoding the WNV capsid protein was constructed, and the in vivo immune responses generated were investigated in DNA vaccine-immunized mice. Antigen-specific humoral and cellular immune responses were observed, including a potent induction of antigen-specific Th1 and cytotoxic T lymphocyte responses. Strong induction of Th1-type immune responses included high levels of antigen-specific elaboration of the Th1-type cytokines interferon-gamma and interleukin-2 and beta-chemokines RANTES (regulated upon activation, normal T cell-expressed and secreted) and macrophage inflammatory protein-1beta. Dramatic infiltration of CD4 and CD8 T cells and macrophages also was observed at the muscle injection site. These results support the potential utility of this method as a tool for developing immunization strategies for WNV and other emerging pathogens.
    The Journal of Infectious Diseases 11/2001; 184(7):809-16. · 5.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate specific antigen (PSA) is a widely used marker for prostate cancer, which is secreted by normal prostate cells at low levels, but is produced more substantially by cancer cells. We have previously reported on the use of a DNA vaccine construct that encodes for human PSA gene to elicit host immune responses against cells producing PSA. DNA immunization strategy delivers DNA constructs encoding for a specific immunogen into the host, who becomes the in vivo protein source for the production of antigen. This antigen then is the focus of the resulting immune response. In this study, we examine the induction of immune responses and safety profiles in rhesus macaques immunized with DNA-based PSA vaccine. We observed induction of PSA-specific humoral response as well as positive PSA-specific lymphoproliferative (LPA) response in the vaccinated macaques. We also observed that the stimulated T cells from the PSA-immunized rhesus macaques produced higher levels of Th1 type cytokine IFN-gamma than the control vector immunized animals. On the other hand, DNA immunization did not result in any adverse effects in the immunized macaques, as indicated by complete blood counts, leukocyte differentials and hepatic and renal chemistries. The macaques appeared healthy, without any physical signs of toxicity throughout the observation period. In addition, we did not observe any adverse effect on the vaccination site. The apparent safety and immunogenecity of DNA immunization in this study suggest that further evaluation of this vaccination strategy is warranted.
    Oncogene 08/2001; 20(33):4497-506. · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multicomponent DNA vaccines were used to elicit immune responses, which can impact viral challenge in three separate rhesus macaque models. Eight rhesus macaques were immunized with DNA vaccines for HIV env/rev and SIV gag/pol and were challenged intravenously with 10 animal infective doses (AID(50)) of cell-free SHIV IIIB. Three of eight immunized rhesus macaques were protected, exhibiting no detectable virus. Animals protected from nonpathogenic SHIVIIIB challenge were rested for extended periods of time and were rechallenged first with pathogenic SIV(mac239) and subsequently with pathogenic SHIV89.6P viruses. Following the pathogenic challenges, all three vaccinated animals were negative for viral coculture and antigenemia and were negative by PCR. In contrast, the control animals exhibited antigenemia by 2 weeks postchallenge and exhibited greater than 10 logs of virus/10(6) cells in limiting dilution coculture. The control animals exhibited CD4 cell loss and developed SIV-related wasting with high viral burden and subsequently failed to thrive. Vaccinated animals remained virus-negative and were protected from the viral load, CD4 loss, disease, and death. We observed strong Th1-type cellular immune responses in the protected macaques throughout the study, suggesting their important roles in protection. These studies support the finding that multicomponent DNA vaccines can directly impact viral replication and disease in a highly pathogenic challenge system, thus potentially broadening our strategies against HIV.
    Virology 08/2001; 285(2):204-17. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA immunization is an important vaccination technique that is being explored as an immunotherapeutic strategy against a variety of infectious diseases as well as cancer. We have been investigating the utility of DNA-based vaccine strategy against prostate cancer. We have developed a DNA vaccine construct that encodes for the human prostate specific antigen (PSA) gene. PSA expression is limited to prostate cells, and the level of PSA expression is substantially increased in prostate cancer cells. This tissue specificity makes PSA a potential target for the development of immunotherapies against prostate cancer. A DNA-based PSA vaccine was used to elicit PSA-specific host immune responses in rodent and nonhuman primate models. In an effort to enhance the clinical utility of the DNA-based PSA vaccine, we also examined the use of cytokine gene adjuvants to modulate vaccine-induced immune responses in these animal models. We observed that pCPSA vaccine-induced humoral and cellular immune responses can be modulated through the coimmunization with cytokine genes in mice, and these enhancement effects on the PSA-specific cellular responses were extended in macaques. More specifically, coimmunization with interleukin (IL)-2 cDNA construct resulted in a significant enhancement of PSA-specific antibody responses in both mice and macaque models. In contrast, coinjection of IL-12 resulted in reduction of antibody responses in both models. In mice, the groups coimmunized with IL-2, IL-12, or IL-18 showed a dramatic increase in T helper cell proliferation over the results with pCPSA alone. These results support that further evaluation of this vaccination strategy to treat prostate cancer is warranted.
    Clinical Cancer Research 04/2001; 7(3 Suppl):882s-889s. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extensive experiments have shown DNA vaccines' ability to elicit immune responses in vivo in a safe and well-tolerated manner in several model systems, including rodents and non-human primates. As the DNA-based vaccine and immunotherapy approaches are being explored in humans, significant efforts have also been focused on further improving the immune potency of this technology. One strategy to enhance immune responses for DNA vaccines is the use of molecular or genetic adjuvants. These molecular adjuvant constructs (which encodes for immunologically important molecules such as cytokines) can be co-administered along with DNA vaccine constructs. Once delivered, these adjuvants have shown to modulate the magnitude and direction (humoral or cellular) of the vaccine-induced immune responses in rodent models. To date, however, there has been very little data reported from studies in primates. In this study, we examined the effects of cytokine gene adjuvants to enhance the level of cell-mediated immune responses in rhesus macaques. We co-immunized rhesus macaques with expression plasmids encoding for IL-2, IFN-gamma or IL-4 cytokines along with the DNA vaccine constructs encoding for HIV env/rev (pCEnv) and SIV gag/pol (pCSGag/pol) proteins. We observed that coadministration of IL-2 and IFN-gamma cDNA resulted in enhancement of antigen-specific T cell-mediated immune responses.
    Vaccine 04/2001; 19(17-19):2496-505. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunity to tumors as well as to viral and bacterial pathogens is often mediated by cytotoxic T lymphocytes (CTLs). Thus, the ability to induce a strong cell-mediated immune response is an important requirement of novel immunotherapies. Antigen-presenting cells (APCs), including dendritic cells (DCs), are specialized in initiating T-cell immunity. Harnessing this innate ability of these cells to acquire and present antigens, we sought to improve antigen presentation by targeting antigens directly to DCs in vivo through apoptosis. We engineered Fas-mediated apoptotic death of antigen-bearing cells in vivo by co-expressing the immunogen and Fas in the same cell. We then observed that the death of antigen-bearing cells results in increased antigen acquisition by APCs including DCs. This in vivo strategy led to enhanced antigen-specific CTLs, and the elaboration of T helper-1 (Th1) type cytokines and chemokines. This adjuvant approach has important implications for viral and nonviral delivery strategies for vaccines or gene therapies.
    Nature Biotechnology 10/2000; 18(9):974-9. · 32.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced by the use of molecular adjuvants. For example, coadministration of costimulatory molecules (CD80 and CD86), proinflammatory cytokines (interleukin-1alpha [IL-1alpha], tumor necrosis factor-alpha [TNF-alpha, and TNF-beta), Th1 cytokines (interleukin-2 [IL-2], IL-12, IL-15, and IL-18), Th2 cytokines (IL-4, IL-5, and IL-10), and granulocytes-macrophage colony-stimulating factor (GM-CSF) with DNA vaccine constructs leads to modulation of the magnitude and direction (humoral or cellular) of the immune responses. To further engineer the immune response in vivo, we compared the induction and regulation of immune responses from the codelivery of chemokine (IL-8, interferon-gamma-inducible protein-10 [gammaIP-10], macrophage inhibitory protein-1alpha [MIP-1alpha], and RANTES) genes with codelivery of cytokine genes. We found that as in cytokine gene codelivery, coimmunization with chemokine genes along with DNA immunogen constructs can modulate the direction and magnitude of induced immune responses. We observed that coimmunization with IL-8, gammaIP-10, and MIP-1alpha genes increased the antibody response. We also found that coinjection with IL-8, gammaIP-10, and RANTES resulted in a dramatic enhancement of T helper (Th) proliferation response. Furthermore, among all coinjection combinations, we found that RANTES coinjection caused a high level of cytotoxic lymphocyte (CTL) enhancement. This enhancement of CTL responses observed from the coinjection with RANTES was CD8+ T cell dependent. Together with earlier reports on the utility of coimmunizing immunologically important molecules with DNA immunogens, we demonstrate the potential of this strategy as an important tool for the development of more rationally designed vaccines.
    Journal of Interferon & Cytokine Research 06/2000; 20(5):487-98. · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important limitation of DNA immunization in nonhuman primates is the difficulty in generating high levels of antigen-specific antibody responses; strategies to enhance the level of immune responses to DNA immunization may be important in the further development of this vaccine strategy for humans. We approached this issue by testing the ability of molecular adjuvants to enhance the levels of immune responses generated by multicomponent DNA vaccines in rhesus macaques. Rhesus macaques were coimmunized intramuscularly with expression plasmids bearing genes encoding Th1 (interleukin 2 [IL-2] and gamma interferon)- or Th2 (IL-4)-type cytokines and DNA vaccine constructs encoding human immunodeficiency virus Env and Rev and simian immunodeficiency virus Gag and Pol proteins. We observed that the cytokine gene adjuvants (especially IL-2 and IL-4) significantly enhanced antigen-specific humoral immune responses in the rhesus macaque model. These results support the assumption that antigen-specific responses can be engineered to a higher and presumably more desirable level in rhesus macaques by genetic adjuvants.
    Journal of Virology 05/2000; 74(7):3427-9. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As we explore the potential improvements to the current DNA vaccine strategies, it may be desirable to investigate methods to improve the level of resulting immune responses. One strategy is the use of cytokine cDNA as molecular adjuvants for DNA-based vaccines. Codelivery of these molecular adjuvants consisting of expression plasmid encoding for cytokines with DNA vaccine constructs is an effective method to modulate the magnitude and direction (humoral or cellular) of the immune responses. We have previously reported on the immunomodulatory effects of codelivering cDNA for interleukin-2 (IL-2) and IL-4 as molecular adjuvants for DNA-based vaccines. In this report, we extend these finding and compare the immunomodulatory effects of IL-2 and IL-4 with those of cDNA for prototypical Thl-type cytokine interferon-y (IFN-gamma) and Th2-type cytokine IL-13. We observed that distinct antigen-specific immune modulation can be achieved by the coinjection of IFN-gamma or IL-13 genes with DNA immunogen cassettes. We observed that IFN-gamma is a strong driver of Thl immune responses. Furthermore, in contrast to previous reports on their similarities in biologic activities, IL-13 and IL-4 cDNA coimmunizations modulated vaccine-induced immune responses differently in this model. Overall, these results further support the potential utility of this strategy as an important tool for the development of vaccines and immune therapies.
    Journal of Interferon & Cytokine Research 04/2000; 20(3):311-9. · 3.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies have indicated that professional APCs in the periphery, such as dendritic cells and macrophages, play an important role in initiating DNA vaccine-specific immune responses. To engineer the immune response induced by DNA vaccines in vivo we investigated the modulatory effects of codelivering growth factor genes for the hematopoietic APCs along with DNA vaccines. Specifically, we examined the effects on the antigen-specific immune responses following the codelivery of the gene expression cassettes for M-CSF, G-CSF, and GM-CSF along with HIV-1 DNA immunogen constructs. We observed that coimmunization with GM-CSF increased the antibody response and resulted in a significant enhancement of lymphoproliferative response. Furthermore, among all coinjection combinations, we found that M-CSF coinjections resulted in a high level of CTL enhancement. This enhancement of CTL responses observed from the coinjection with M-CSF was CD8+ T cell dependent and was associated with the presence of CD11c+ cells at the site of injection and with the antigen-specific induction of the beta-chemokine MIP-1beta, suggesting a role for this chemokine in CTL induction. These results suggest that hematopoietic growth factors should be further studied as potential adjuvants for in vivo modulators of immune responses.
    Human Gene Therapy 02/2000; 11(2):305-21. · 4.02 Impact Factor

Publication Stats

515 Citations
77.23 Total Impact Points

Institutions

  • 2000–2001
    • University of Pennsylvania
      • Department of Pathology and Laboratory Medicine
      Philadelphia, PA, United States
    • Hospital of the University of Pennsylvania
      • Department of Pathology and Laboratory Medicine
      Philadelphia, PA, United States