J J Zhu

University of Wisconsin, Madison, Madison, MS, United States

Are you J J Zhu?

Claim your profile

Publications (6)15.79 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: By using the whole cell patch recording technique in vitro, we examined the voltage-dependent firing patterns of 69 interneurons in the rat dorsal lateral geniculate nucleus (LGN). When held at a hyperpolarized membrane potential, all interneurons responded with a burst of action potentials. In 48 interneurons, larger current pulses produced a bursting oscillation. When relatively depolarized, some interneurons produced a tonic train of action potentials in response to a depolarizing current pulse. However, most interneurons produced only oscillations, regardless of polarization level. The oscillation was insensitive to the bath application of a combination of blockers to excitatory and inhibitory synaptic transmission, including 30 microM 6,7-dinitroquinoxaline-2,3-dione, 100 microM (+/-)-2-amino-5-phosphonopentanoic acid, 20 microM bicuculline, and 2 mM saclofen, suggesting an intrinsic event. The frequency of the oscillation in interneurons was dependent on the intensity of the injection current. Increasing current intensity increased the oscillation frequency. The maximal frequency of the oscillation was 5-15 Hz for most cells, with some ambiguity caused by the difficulty of precisely defining a transition from oscillatory to regular firing behavior. In contrast, the interneuron oscillation was little affected by preceding depolarizing and hyperpolarizing pulses. In addition to being elicited by depolarizing current injections, the oscillation could also be initiated by electrical stimulation of the optic tract when the interneurons were held at a depolarized membrane potential. This suggests that interneurons may be recruited into thalamic oscillations by synaptic inputs. These results indicate that interneurons may play a larger role in thalamic oscillations than was previously thought.
    Journal of Neurophysiology 03/1999; 81(2):702-11. · 3.30 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We used whole-cell patch recording to study 102 local interneurons in the rat dorsal lateral geniculate nucleus in vitro. Input impedance with this technique (607.0+/-222.4 MOhm) was far larger than that measured with sharp electrode techniques, suggesting that interneurons may be more electrotonically compact than previously believed. Consistent and robust burst firing was observed in all interneurons when a slight depolarizing boost was given from a potential at, or slightly hyperpolarized from, resting membrane potential. These bursts had some similarities to the low-threshold spike described previously in other thalamic neuron types. The bursting responses were blocked by Ni+, suggesting that the low-threshold calcium current I(T), responsible for the low-threshold spike, was also involved in interneuron burst firing. Compared to the low-threshold spike of thalamocortical cells, however, the interneuron bursts were of relatively long duration and low intraburst frequency. The requirement for a depolarizing boost to elicit the burst is consistent with previous reports of a depolarizing shift of the I(T) activation curve of interneurons relative to thalamocortical cells, a finding we confirmed using voltage-clamp. Voltage-clamp study also revealed an additional long-lasting current that could be tentatively identified as the calcium activated non-selective cation current, I(CAN), based on reversal potential and on pharmacological characteristics. Computer simulation of the interneuron burst demonstrated that its particular morphology is likely due to the interaction of I(T) and I(CAN). In the slice, bursts could also be elicited by stimulation of the optic tract, suggesting that they may occur in response to natural stimulation. Synaptically triggered bursts were only partially blocked by Ni+, but could then be completely blocked by further addition of (+/-)-2-amino-5-phosphonopentanoic acid. The existence of robust bursts in this cell type suggests an additional role for interneurons in sculpting sensory responses by feedforward inhibition of thalamocortical cells. The low-threshold spike is a mechanism whereby activity in a neuron is dependent on a prior lack of activity in that same neuron. Understanding of the low-threshold spike in the other major neuron types of the thalamus has brought many new insights into how thalamic oscillations might be involved in sleep and epilepsy. Our description of this phenomenon in the interneurons of the thalamus suggests that these network oscillations might be even more complicated than previously believed.
    Neuroscience 02/1999; 91(4):1445-60. · 3.12 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: A hyperpolarization-activated cation conductance contributes to the membrane properties of a variety of cell types. In the thalamus, a prominent hyperpolarization-activated cation conductance exists in thalamocortical cells, and this current is implicated in the neuromodulation of complex firing behaviors. In contrast, the GABAergic cells in the reticular nucleus in the thalamus appear to lack this conductance. The presence and role of this cation conductance in the other type of thalamic GABAergic cells, local interneurons, is still unclear. To resolve this issue, we studied 54 physiologically and morphologically identified local interneurons in the rat dorsal lateral geniculate nucleus using an in vitro whole-cell patch recording technique. We found that hyperpolarizing current injections induced depolarizing voltage sags in these geniculate interneurons. The I-V relationship revealed an inward rectification. Voltage-clamp study indicated that a slow, hyperpolarization-activated cation conductance was responsible for the inward rectification. We then confirmed that this slow conductance had properties of the hyperpolarization-activated cation conductance described in other cell types. The slow conductance was insensitive to 10 mM tetraethylammonium and 0.5 mM 4-aminopyridine, but was largely blocked by 1-1.5 mM Cs+. It was permeable to both K+ and Na+ ions and had a reversal potential of -44 mV. The voltage dependence of the hyperpolarization-activated cation conductance in interneurons was also studied: the activation threshold was about -55 mV, half-activation potential was about -80 mV and maximal conductance was about 1 nS. The activation and deactivation time constants of the conductance ranged from 100 to 1000 ms, depending on membrane potential. The depolarizing voltage sags and I-V relationship were further simulated in a model interneuron, using the parameters of the hyperpolarization-activated cation conductance obtained from the voltage-clamp study. The time-course and voltage dependence of the depolarizing voltage sags and I-V relationship in the model cell were very similar to those found in geniculate interneurons in current clamp. Taken together, the results of the present study suggest that thalamic local interneurons possess a prominent hyperpolarization-activated cation conductance, which may play important roles in determining basic membrane properties and in modulating firing patterns.
    Neuroscience 02/1999; 92(2):445-57. · 3.12 Impact Factor
  • J J Zhu, D J Uhlrich
    [show abstract] [hide abstract]
    ABSTRACT: We used the whole-cell recording technique in an in vitro preparation to examine the electrophysiological actions of the muscarinic receptors on relay cells in the rat lateral geniculate nucleus. Drop application of the muscarinic agonist acetyl-beta-methylcholine resulted in a slow depolarization that persisted for several minutes. The response was insensitive to the nicotinic antagonist hexamethonium, but was blocked by atropine, a muscarinic antagonist. The response was also insensitive to blockade of synaptic transmission by tetrodotoxin, indicating a direct muscarinic effect. The muscarinic depolarization consisted of two components that were somewhat separated in time. The early portion of the muscarinic response was mediated by a large inward current with little change in input resistance, while the later portion was mediated by a small inward current associated with a large increase in input resistance. Pharmacological agents were used to distinguish the two components. Drop application of McN-A-343, an ml receptor agonist, could only mimic the later component of the muscarinic response. This was supported by the result that the later component was blocked by low concentrations of pirenzepine. These data suggest that the ml receptor only mediates the late component of the muscarinic response, while the early component is mainly mediated by the m3 receptor. The idea that both ml and m3 receptors were involved in the muscarinic depolarization was further supported by voltage-clamp analysis. This revealed that activation of the ml receptor was associated with a decrease in an inward potassium current, IKleak, while activation of the m3 receptor was likely associated with both a decrease in IKleak and an increase in the hyperpolarization-activated cation current Ih. In summary, our data suggest that muscarinic responses in geniculate relay cells result from the activation of two receptors, which modulate IKleak and Ih. Given the fact that the ascending aminergic systems also depolarize geniculate relay cells via two receptors acting on IKleak and Ih, we concluded that ascending activating systems use common mechanisms to enact the depolarizing form of arousal in relay neurons.
    Neuroscience 01/1999; 87(4):767-81. · 3.12 Impact Factor
  • Source
    J J Zhu, D J Uhlrich
    [show abstract] [hide abstract]
    ABSTRACT: We used the in vitro whole-cell recording technique to study the nicotinic responses of relay cells and interneurons in the adult rat dorsal lateral geniculate nucleus, the thalamic nucleus that conveys visual signals from the retina to the cortex. These geniculate relay cells and interneurons were identified by their physiological and morphological properties. We found that, in the presence of a muscarinic antagonist, atropine, acetylcholine induced a depolarization in relay cells. A similar depolarization was induced by application of nicotine. These depolarizations were completely blocked by a nicotinic antagonist, hexamethonium, but were little affected by bath solution that contained tetrodotoxin and/or low calcium concentration to block synaptic transmission. This suggests that the depolarization is mediated directly by nicotinic receptors in relay cells. Application of nicotine also induced a depolarization in geniculate interneurons. The interneurons continued to exhibit a response to nicotine in the presence of synaptic blockade, although the time-course of the response was altered. The nicotinic responses in relay cells and interneurons shared many similar properties. Both exhibited desensitization, although this characteristic was much more pronounced in the interneurons. In both cell types, the nicotinic response activated a relatively linear conductance with a slight inward rectification. The reversal potential for the conductance was about - 33 mV, which is consistent with a permeability to sodium and potassium ions. The reversal potential shifted negatively by 5-6 mV when the bath solution contained low calcium, which further suggests a permeability to calcium ions. Our results indicate that nicotinic receptors are present in both geniculate relay cells and interneurons. The nicotinic depolarization in relay cells may serve to enhance transmission of visual signals through the lateral geniculate nucleus as well as to contribute to a voltage-dependent shift in the response mode of geniculate relay cells from burst to tonic (single-spike) firing. The nicotinic depolarization in interneurons may provide an explanation for reports that activation of the cholinergic system can enhance inhibitory tuning in the lateral geniculate nucleus.
    Neuroscience 10/1997; 80(1):191-202. · 3.12 Impact Factor

Publication Stats

139 Citations
193 Views
15.79 Total Impact Points

Institutions

  • 1997–1999
    • University of Wisconsin, Madison
      • Department of Neurology
      Madison, MS, United States