J L Darlix

Ecole normale supérieure de Lyon, Lyons, Rhône-Alpes, France

Are you J L Darlix?

Claim your profile

Publications (103)521.73 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: During reverse transcription, the HIV-1 RNA is converted by the reverse transcriptase (RT) into proviral DNA. RT is assisted by the HIV-1 nucleocapsid (NCp7) protein that notably increases the ability of RT to synthesize DNA through pause sites. Using single molecule FRET, we monitored the NCp7 effect on the binding of RT to nucleic acid sequences corresponding to two different pause sites. NCp7 was found to modify the distribution of RT orientations on the oligonucleotides and decrease the residence time of RT on one of the pause sites. These results give direct insight into the NCp7 molecular mechanism in reverse transcription.
    Single Molecule Spectroscopy and Superresolution Imaging VI, edited by Jörg Enderlein, Ingo Gregor, Zygmunt Karol Gryczynski, Rainer Erdmann, Felix Koberling, Proc. of SPIE, USA; 02/2013
  • Retrovirology. 01/2009;
  • Source
    Retrovirology 01/2009; · 5.66 Impact Factor
  • 12/2004: pages 180-197;
  • D Muriaux, J L Darlix, A Cimarelli
    [Show abstract] [Hide abstract]
    ABSTRACT: In the rush to develop anti-viral drugs against the human immunodeficiency virus type I (HIV-1), all the steps of the viral life cycle are potential targets of therapeutic intervention. In this review, we will explore the recent advances on strategies that aim at obstructing the formation, the release and the infectivity of newly formed virion particles from HIV-1 infected cells.
    Current Pharmaceutical Design 02/2004; 10(30):3725-39. · 3.31 Impact Factor
  • Source
    A Cimarelli, J L Darlix
    [Show abstract] [Hide abstract]
    ABSTRACT: Retroviral assembly proceeds through a series of concerted events that lead to the formation and release of infectious virion particles from the infected cell. Upon translation, structural proteins are targeted to the plasma membrane where they accumulate. There, the nascent particle forces the plasma membrane to form a bud, which pinches off releasing the virion particle from the cell. In this review we describe the molecular mechanisms now known to be behind the process of virion assembly. In particular, we focus on the human immunodeficiency virus type 1, the prototype member of the lentivirus subfamily of the Retroviridae.
    Cellular and Molecular Life Sciences CMLS 08/2002; 59(7):1166-84. · 5.62 Impact Factor
  • E. A. Derrington, J.-L. Darlix
    [Show abstract] [Hide abstract]
    ABSTRACT: There is conclusive evidence that the host gene encoding the prion precursor protein (PrPc) is implicated in the development and propagation of transmissible spongiform encephalopathies collectively known as prion diseases. Nevertheless, the normal cellular function of this widely expressed and highly conserved gene product remains elusive. Here we review evidence implicating PrPc in a number of diverse phenomena including the transportation and metabolism of metal ions associated with protection against oxidative stress; behavior as a membrane receptor or ligand, or a receptor-bound molecule implicated in signal transduction; and as a nucleic acid-binding protein with the functional properties of a nucleic acid chaperone protein. A complex picture is emerging of PrPc as a multifunctional protein. (c) 2002 Prous Science. All rights reserved.
    Drug News & Perspectives 06/2002; 15(4):206-219. · 3.13 Impact Factor
  • Current topics in microbiology and immunology 02/2002; 261:53-74. · 4.86 Impact Factor
  • Source
    Molecular and Cellular Biology 01/2002; 21(23):8238-46. · 5.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus-based methodology to transduce foreign genes into mouse neural precursors. We used a high-titer bicistronic retroviral vector that encodes a marker gene, placental alkaline phosphatase (plap), and a selection gene, neomycin phosphotransferase II (neoR), under the translational control of two retroviral internal ribosome entry segments. Transduction efficiency even without selection was up to 95% for multipotential neurospheres derived from embryonic striata and grown with basic fibroblast growth factor 2. Expression of plap and neoR was sustained with time in culture and upon differentiation into neurons, astrocytes, and oligodendrocytes, as shown by double immunofluorescence labeling with cell type-specific markers, Western blotting, and neomycin resistance. However, levels of plap were decreased in differentiated oligodendrocytes. Transduction with the same vector of neonatal oligodendrocyte precursors grown in oligospheres consistently resulted in a lower proportion of plap-immunoreactive cells and enhanced cell death in the absence of neomycin. However, plap expression was maintained in some differentiated oligodendrocytes expressing galactocerebroside or myelin basic protein. In that neurospheres can be easily expanded in vitro and factors enabling their differentiation into the three main central nervous system cell types are being elucidated, this methodology could be used in the future to produce large number of transduced, differentiated neural cells.
    Journal of Neuroscience Research 09/2001; 65(3):208-19. · 2.97 Impact Factor
  • Source
    C Deffaud, J L Darlix
    [Show abstract] [Hide abstract]
    ABSTRACT: The 5' leader of Rous sarcoma virus (RSV) genomic RNA and of retroviruses in general is long and contains stable secondary structures that are critical in the early and late steps of virus replication such as RNA dimerization and packaging and in the process of reverse transcription. The initiation of RSV Gag translation has been reported to be 5' cap dependent and controlled by three short open reading frames located in the 380-nucleotide leader upstream of the Gag start codon. Translation of RSV Gag would thus differ from that prevailing in other retroviruses such as murine leukemia virus, reticuloendotheliosis virus type A, and simian immunodeficiency virus, in which an internal ribosome entry segment (IRES) in the 5' end of the genomic RNA directs efficient Gag expression despite stable 5' secondary structures. This prompted us to investigate whether RSV Gag translation might be controlled by an IRES-dependent mechanism. The results show that the 5' leaders of RSV and v-Src RNA exhibit IRES properties, since these viral elements can promote efficient translation of monocistronic RNAs in conditions inhibiting 5' cap-dependent translation. When inserted between two cistrons in a canonical bicistronic construct, both the RSV and v-Src leaders promote expression of the 3' cistron. A genetic analysis of the RSV leader allowed the identification of two nonoverlapping 5' and 3' leader domains with IRES activity. In addition, the v-Src leader was found to contain unique 3' sequences promoting an efficient reinitiation of translation. Taken together, these data lead us to propose a new model for RSV translation.
    Journal of Virology 01/2001; 74(24):11581-8. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the generation and the characterization of new lentiviral vectors derived from SIVmac251, a simian immunodeficiency virus (SIV). A methodical approach was used to engineer both efficient and safe packaging constructs allowing the production of SIV viral core proteins. SIV-vectors encoding GFP (green fluorescent protein) were generated as VSV-G-pseudotyped particles upon transient expression of the vector construct and helper functions in 293 cells. The SIV vectors were able to transduce efficiently various target cell types at low multiplicity of infection, including monocyte-differentiated human dendritic cells (DCs) which retained their capacity to differentiate into mature DCs after gene transfer. Transduction of the DCs by the SIV vectors was prevented when infections were performed in the presence of AZT, a reverse-transcriptase inhibitor. After gene transfer, expression of the GFP in the target cells remained constant after several weeks, indicating that the vectors had been stably integrated into the genome of the host cells. Preparations of SIV vectors were systematically checked for the absence of replication-competent and recombinant retroviruses but remained negative, suggesting the innocuousness of these novel gene delivery vectors. Side-to-side comparisons with vectors derived from HIV-1 (human immunodeficiency virus) indicated that the SIV vectors were equally potent in transducing proliferating target cells. Finally, we have determined the infectivity of SIV vectors pseudotyped with surface glycoproteins of several membrane-enveloped viruses.
    Gene Therapy 11/2000; 7(19):1613-23. · 4.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lentivirus-derived vectors are very promising gene delivery systems since they are able to transduce nonproliferating differentiated cells, while murine leukemia virus-based vectors can only transduce cycling cells. Here we report the construction and characterization of highly efficient minimal vectors derived from simian immunodeficiency virus (SIVmac251). High-fidelity PCR amplification of DNA fragments was used to generate a minimal SIV vector formed from a 5' cytomegalovirus early promoter, the 5' viral sequences up to the 5' end of gag required for reverse transcription and packaging, the Rev-responsive element, a gene-expressing cassette, and the 3' long terminal repeat (LTR). Production of SIV vector particles was achieved by transfecting 293T cells with the vector DNA and helper constructs coding for the viral genes and the vesicular stomatitis virus glycoprotein G envelope. These SIV vectors were found to have transducing titers reaching 10(7) transducing units/ml on HeLa cells and to deliver a gene without transfer of helper functions to target cells. The central polypurine tract can be included in the minimal vector, resulting in a two- to threefold increase in the transduction titers on dividing or growth-arrested cells. Based on this minimal SIV vector, a sin vector was designed by deleting 151 nucleotides in the 3' LTR U3 region, and this SIV sin vector retained high transduction titers. Furthermore, the minimal SIV vector was efficient at transducing terminally differentiated human CD34(+) cell-derived or monocyte-derived dendritic cells (DCs). Results show that up to 40% of human primary DCs can be transduced by the SIV vectors. This opens a new perspective in the field of immunotherapy.
    Journal of Virology 10/2000; 74(18):8307-15. · 5.08 Impact Factor
  • G Cristofari, D Ficheux, J L Darlix
    [Show abstract] [Hide abstract]
    ABSTRACT: The reverse transcription process for retroviruses and retrotransposons takes place in a nucleocore structure in the virus or virus-like particle. In retroviruses the major protein of the nucleocore is the nucleocapsid protein (NC protein), which derives from the C-terminal region of GAG. Retroviral NC proteins are formed of either one or two CCHC zinc finger(s) flanked by basic residues and have nucleic acid chaperone and match-maker properties essential for virus replication. Interestingly, the GAG protein of a number of retroelements including Spumaviruses does not possess the hallmarks of retroviral GAGs and in particular lacks a canonical NC protein. In an attempt to search for a nucleic acid chaperone activity in this class of retroelements we used the yeast Ty1 retrotransposon as a model system. Results shows that the C-terminal region of Ty1 GAG contains a nucleic acid chaperone domain capable of promoting the annealing of primer tRNA(i)(Met) to the multipartite primer binding site, Ty1 RNA dimerization and initiation of reverse transcription. Moreover Ty1 RNA dimerization, in a manner similar to Ty3 but unlike retroviral RNAs, appears to be mediated by tRNA(i)(Met). These findings suggest that nucleic acid chaperone proteins probably are general co-factors for reverse transcriptases.
    Journal of Biological Chemistry 07/2000; 275(25):19210-7. · 4.65 Impact Factor
  • T Ohlmann, M Lopez-Lastra, J L Darlix
    [Show abstract] [Hide abstract]
    ABSTRACT: The retroviral genomic RNA is the messenger for the synthesis of the group-specific antigen (gag) and polymerase precursors of the major structural proteins and enzymes of the virion. The 5'-untranslated leader of the simian immunodeficiency virus (SIV) genomic RNA is formed of highly structured domains involved in key steps of the viral life cycle. Thus, the presence of stable RNA structures between the 5'-cap and the gag start codon are thought to strongly inhibit scanning of a 43 S preinitiation ribosomal complex. This prompted us to look for an alternative to the canonical ribosome scanning. By using a standard bicistronic assay in the rabbit reticulocyte lysate, we show that the SIVmac 5'-leader contains an internal ribosome entry segment (IRES) and that gene expression driven by this IRES is stimulated upon cleavage of eukaryotic initiation factor 4G. Deletion analysis revealed that the sequence between the major splice donor and the gag AUG codon is required for IRES activity. DNA transfection and viral transduction experiments in both NIH-3T3 and COS-7 cells confirmed that translation driven by the SIV leader is IRES-dependent and thus insensitive to the immunosuppressant rapamycin. Identification of an IRES in SIV is of particular interest for the understanding of lentivirus replication and also for the design of novel lentiviral vectors suitable for gene transfer.
    Journal of Biological Chemistry 05/2000; 275(16):11899-906. · 4.65 Impact Factor
  • Advances in pharmacology (San Diego, Calif.) 02/2000; 48:345-72.
  • Source
    C Deffaud, J L Darlix
    [Show abstract] [Hide abstract]
    ABSTRACT: The 5' untranslated region, also called the leader, of oncoretroviruses and lentiviruses is long and is formed of several structured domains critically important in virus replication. The 5' leader of murine leukemia virus (MLV) RNA contains an internal ribosomal entry segment (IRES) which promotes synthesis of Gag and glyco-Gag polyprotein precursors. In the present study we investigated the translational features of the 5' leader of MLV subgenomic RNA (env RNA) encoding the Env polyprotein precursor. When the env leader was inserted between two genes, such as lacZ and the neomycin resistance cassette, in a dicistronic vector, it allowed IRES-dependent translation of the 3' cistron in the rabbit reticulocyte lysate system and in murine cells. The drug rapamycin and the foot-and-mouth disease virus L protease, known to inhibit cap-dependent translation, caused an enhancement of the translation driven by the env leader sequence, consistent with an IRES activity promoting Env expression. Analysis of several deletion mutants led us to localize the minimal env IRES between the splice junction and the env AUG start codon.
    Journal of Virology 02/2000; 74(2):846-50. · 5.08 Impact Factor
  • Source
    L Berthoux, C Péchoux, J L Darlix
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus type 1 nucleocapsid protein is a major structural component of the virion core and a key factor involved in proviral DNA synthesis and virus formation. 2,2'-Dithiobenzamides (DIBA-1) and related compounds that are inhibitors of NCp7 are thought to eject zinc ions from NCp7 zinc fingers, inhibiting the maturation of virion proteins. Here, we show that the presence of DIBA-1 at the time of virus formation causes morphological malformations of the virus and reduces proviral DNA synthesis. Thus, it seems that DIBA-1 is responsible for a "core-freezing effect," as shown by electron microscopy analyses. DIBA-1 can also directly interfere with the fate of the newly made proviral DNA in a manner independent of its effects on virion core formation. These data strongly suggest that nucleocapsid protein is a prime target for new compounds aimed at inhibiting human immunodeficiency virus and other retroviruses.
    Journal of Virology 01/2000; 73(12):10000-9. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse virus-like 30S RNAs (VL30m) constitute a family of retrotransposons, present at 100 to 200 copies, dispersed in the mouse genome. They display little sequence homology to Moloney murine leukemia virus (MoMLV), do not encode virus-like proteins, and have not been implicated in retroviral carcinogenesis. However, VL30 RNAs are efficiently packaged into MLV particles that are propagated in cell culture. In this study, we addressed whether the 5' region of VL30m could replace the 5' leader of MoMLV functionally in a recombinant vector construct. Our data confirm that the putative packaging sequence of VL30 is located within the 5' region (nucleotides 362 to 1149 with respect to the cap structure) and that it can replace the packaging sequence of MoMLV. We also show that VL30m contains an internal ribosome entry segment (IRES) in the 5' region, as do MoMLV, Friend murine leukemia virus, Harvey murine sarcoma virus, and avian reticuloendotheliosis virus type A. Our data show that both the packaging and IRES functions of the 5' region of VL30m RNA can be efficiently used to develop retrotransposon-based vectors.
    Journal of Virology 11/1999; 73(10):8393-402. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During human immunodeficiency virus type 1 (HIV-1) assembly, the primer tRNA for the reverse transcriptase-catalyzed synthesis of minus-strand strong-stop cDNA, tRNA3Lys, is selectively packaged into the virus and annealed onto the primer binding site on the RNA genome. Annealing of tRNA3Lys in HIV-1 is independent of polyprotein processing and is facilitated in vitro by p7 nucleocapsid (NCp7). We have previously shown that mutations in clusters of basic amino acids flanking the first Cys-His box in NC sequence inhibit annealing of tRNA3Lys in vivo by 70 to 80%. In this report, we have investigated whether these NC mutations act through Pr55(gag) or Pr160(gag-pol). In vivo placement of tRNA3Lys is measured with total viral RNA as the source of primer tRNA-template in an in vitro reverse transcription assay. Cotransfection of COS cells with a plasmid coding for either mutant Pr55(gag) or mutant Pr160(gag-pol), and with a plasmid containing HIV-1 proviral DNA, shows that only the NC mutations in Pr55(gag) inhibit tRNA3Lys placement. The NC mutations in Pr55(gag) reduce viral infectivity by 95% and are trans-dominant-negative, i.e., they inhibit genomic placement of tRNA3Lys even in the presence of wild-type Pr55(gag). This dominant phenotype may indicate that the mutant Pr55(gag) is disrupting an ordered Pr55(gag) structure responsible for the annealing of tRNA3Lys to genomic RNA.
    Journal of Virology 06/1999; 73(5):4485-8. · 5.08 Impact Factor

Publication Stats

5k Citations
521.73 Total Impact Points

Institutions

  • 1991–2002
    • Ecole normale supérieure de Lyon
      Lyons, Rhône-Alpes, France
  • 1993–2001
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France
  • 1997–1999
    • McGill University
      • • Lady Davis Institute for Medical Research
      • • Department of Microbiology and Immunology
      Montréal, Quebec, Canada
  • 1998
    • Case Western Reserve University School of Medicine
      Cleveland, Ohio, United States
    • Jewish General Hospital
      Montréal, Quebec, Canada
  • 1994
    • Institut de Génétique et de Biologie Moléculaire et Cellulaire
      Strasburg, Alsace, France
  • 1992–1993
    • Université René Descartes - Paris 5
      Lutetia Parisorum, Île-de-France, France
  • 1987
    • Cold Spring Harbor Laboratory
      Cold Spring Harbor, New York, United States
    • Paul Sabatier University - Toulouse III
      Tolosa de Llenguadoc, Midi-Pyrénées, France
  • 1978–1984
    • University of Geneva
      • Department of Molecular Biology
      Genève, GE, Switzerland
  • 1983
    • University of Colorado
      • Department of Pathology
      Denver, CO, United States