Isabelle Coppens

Johns Hopkins University, Baltimore, MD, United States

Are you Isabelle Coppens?

Claim your profile

Publications (112)704.25 Total impact

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium falciparum (Pf) has a family of 11 Rab GTPases to regulate its vesicular transport. However, PfRab5B is unique in lacking a C-terminal geranyl-geranylation motif, while having N-terminal palmitoylation and myristoylation motifs. We show that the N-terminal glycine is required for PfRab5B myristoylation in vitro and when an N-terminal PfRab5B fragment possessing both acylation motifs is fused to GFP and expressed in transgenic P. falciparum parasites, the chimeric PfRab5B protein localizes to the plasma membrane. Upon substitution of the modified glycine by alanine the staining becomes diffuse and GFP is found in soluble subcellular fractions. Immuno-electron microscopy shows endogenous PfRab5B decorating the parasite's plasma and food vacuole membranes. Using reverse genetics rab5b couldn't be deleted from the haploid genome of asexual blood stage P. berghei parasites. The failure of PbRab5A or PbRab5C to complement for loss of PbRab5B function indicates non-overlapping roles for the three Plasmodium Rab5s, with PfRab5B involved in trafficking MSP1 to the food vacuole membrane and CK1 to the plasma membrane. We discuss similarities between Plasmodium Rab5B and Arabidopsis thaliana ARA6, a similarly unusual Rab5-like GTPase of plants.
    PLoS ONE 01/2014; 9(2):e87695. · 3.73 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium parasites successfully colonize different habitats within mammals and mosquitoes, and adaptation to various environments is accompanied by changes in their organelle composition and size. Previously, we observed that during hepatocyte infection, Plasmodium discards organelles involved in invasion and expands those implicated in biosynthetic pathways. We hypothesized that this process is regulated by autophagy. Plasmodium spp. possess a rudimentary set of known autophagy-related proteins that includes the ortholog of yeast Atg8. In this study, we analyzed the activity of the ATG8-conjugation pathway over the course of the lifecycle of Plasmodium falciparum and during the liver stage of Plasmodium berghei. We engineered a transgenic P. falciparum strain expressing mCherry-PfATG8. These transgenic parasites expressed mCherry-PfATG8 in human hepatocytes and erythrocytes, and in the midgut and salivary glands of Anopheles mosquitoes. In all observed stages, mCherry-PfATG8 was localized to tubular structures. Our EM and colocalization studies done in P. berghei showed the association of PbATG8 on the limiting membranes of the endosymbiont-derived plastid-like organelle known as the apicoplast. Interestingly, during parasite replication in hepatocytes, the association of PbATG8 with the apicoplast increases as this organelle expands in size. PbATG3, PbATG7 and PbATG8 are cotranscribed in all parasitic stages. Molecular analysis of PbATG8 and PbATG3 revealed a novel mechanism of interaction compared with that observed for other orthologs. This is further supported by the inability of Plasmodium ATG8 to functionally complement atg8Δ yeast or localize to autophagosomes in starved mammalian cells. Altogether, these data suggests a unique role for the ATG8-conjugation system in Plasmodium parasites.
    Autophagy 12/2013; 10(2). · 12.04 Impact Factor
  • Isabelle Coppens
    [Show abstract] [Hide abstract]
    ABSTRACT: Like any obligate intracellular pathogen, the parasite Toxoplasma gondii has lost its capacity for living independently of another organism. Toxoplasma lacks many genes that encode for entire metabolic pathways and has, in return, expanded genes that promote nutrient scavenging to meet its basic metabolic requirements. Although sequestrated in a parasitophorous vacuole and thus insulated from the nutrient-rich host cytosol and organelles by a membrane, T. gondii has evolved efficient strategies to acquire essential metabolites from mammalian cells. This review explores the natural auxotrophies and nutrient scavenging activities of the parasite, emphasizing unique transport systems and salvage pathways. We describe the mechanisms deployed by Toxoplasma to modify its parasitophorous vacuole to gain access to host cytosolic molecules and to hijack host organelles to retrieve their nutrient content. From a therapeutic perspective, we survey the different possibilities to starve T. gondii by nutrient depletion or disruption of salvage pathways.
    International journal for parasitology 10/2013; · 3.39 Impact Factor
  • Isabelle Coppens
    [Show abstract] [Hide abstract]
    ABSTRACT: Apicomplexa are some of the most widespread and poorly controlled pathogens in the world. The metabolism of lipids in these parasites, which include Plasmodium spp., Toxoplasma gondii and Cryptosporidium spp., is essential for the production of infectious progeny and pathogen persistence in their mammalian hosts. Metabolic maps of apicomplexan lipid syntheses reveal auxotrophies for many lipid species, which force these parasites to meet their high demand for lipids through networks of both synthesis and scavenging. Here, I review the unique lipid biosynthetic enzymes and lipid transporter systems of Apicomplexa, focusing on isoprenoids, sphingolipids and cholesterol, and highlight promising chemotherapeutic targets in the lipid synthetic and salvage pathways.
    Nature Reviews Microbiology 10/2013; · 22.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amino acid utilization is important for the growth of the erythrocytic stages of the human malaria parasite Plasmodium falciparum, however the molecular mechanism that permits survival of the parasite during conditions of limiting amino acid supply is poorly understood. We provide data here suggesting that an autophagy pathway functions in P. falciparum despite the absence of a typical lysosome for digestion of the autophagosomes. It involves PfATG8, which has a C-terminal glycine which is absolutely required for association of the protein with autophagosomes. Amino acid starvation provoked increased colocalization between PfATG8- and PfRAB7-labeled vesicles and acidification of the colabeled structures consistent with PfRAB7-mediated maturation of PfATG8-positive autophagosomes; this is a rapid process facilitating parasite survival. Immuno-electron microscopic analyses detected PfRAB7 and PfATG8 on double-membrane-bound vesicles and also near or within the parasite's food vacuole, consistent with autophagosomes fusing with the endosomal system before being routed to the food vacuole for digestion. In nonstarved parasites, PfATG8, but not PfRAB7, was found on the intact apicoplast membrane and on apicoplast-targeted vesicles and apicoplast remnants when the formation of the organelle was disrupted; a localization also requiring the C-terminal glycine. These findings suggest that in addition to a classical role in autophagy, which involves the PfRAB7-endosomal system and food vacuole, PfATG8 is associated with apicoplast-targeted vesicles and the mature apicoplast, and as such contributes to apicoplast formation and maintenance. Thus, PfATG8 may be unique in having such a second role in addition to the formation of autophagosomes required for classical autophagy.
    Autophagy 08/2013; 9(10). · 12.04 Impact Factor
  • Julia D Romano, Isabelle Coppens
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacterium Chlamydia trachomatis and the protozoan parasite Toxoplasma gondii are the causative agents of chlamydiosis and toxoplasmosis in humans, respectively. Both micro-organisms are obligate intracellular pathogens and notorious for extensively modifying the cytoskeletal architecture and the endomembrane system of their host cells to establish productive infections. This review highlights the similar tactics developed by these two pathogens to manipulate their host cell despite their genetic unrelatedness. By using an in vitro cell culture model whereby single fibroblasts are infected by C. trachomatis and T. gondii simultaneously, thus setting up an intracellular competition, we demonstrate that the solutions to the problem of intracellular survival deployed by the parasite and the bacterium may represent an example of convergent evolution, driven by the necessity to acquire nutrients in a hostile environment. This article is protected by copyright. All rights reserved.
    Pathogens and disease. 07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cryptosporidium species are waterborne Apicomplexan parasites that cause diarrheal disease worldwide. Although the mechanisms underlying Cryptosporidium-host cells interactions are not well understood, mucin-like glycoproteins of the parasite are known to mediate attachment and invasion in vitro. We identified C. parvum Clec, a novel mucin-like glycoprotein that contains a C-type lectin domain (CTLD) and has orthologs in C. hominis and C. muris. CTLD-containing proteins are ligand-binding proteins that function in adhesion and signaling and are present in a wide range of organisms from humans to viruses. However, this is the first report of a CTLD-containing protein in protozoa and in Apicomplexa. CpClec is predicted to be a type 1-membrane protein, with a CTLD, an O-glycosylated mucin-like domain, a transmembrane domain and a cytoplasmic tail containing a YXXϕ sorting motif. The predicted structure of CpClec displays several characteristics of canonical CTLD-containing proteins, including a long loop region hydrophobic core associated with calcium-dependent glycan binding as well as predicted calcium and glycan binding sites. CpClec expression during C. parvum infection in vitro is maximal at 48 hours post-infection suggesting that it is developmentally regulated. The 120 kDa Mr of native CpClec is greater than that predicted, most likely due to O-glycosylation. CpClec is localized to the surface of the apical region and to dense granules of sporozoites and merozoites. Taken together, these findings, together with the known functions of C. parvum mucin-like glycoproteins and of CTLD-containing proteins strongly implicate CpClec as playing a significant role in Cryptosporidium-host cell interactions.
    Infection and immunity 07/2013; · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The obligate intracellular protozoan Toxoplasma gondii actively invades mammalian cells and, upon entry, forms its own membrane-bound compartment, named the parasitophorous vacuole (PV). Within the PV, the parasite replicates and scavenges nutrients, including lipids, from host organelles. Although T. gondii can synthesize sphingolipids de novo, it also scavenges these lipids from the host Golgi. How the parasite obtains sphingolipids from the Golgi remains unclear as the PV avoids fusion with host organelles. In this study, we have explored the host Golgi-PV interaction and evaluated the importance of host-derived sphingolipids for parasite growth. We demonstrate that the PV preferentially localizes near the host Golgi early during an infection and remains closely associated with this organelle throughout infection. The parasite subverts the structure of the host Golgi, resulting in its fragmentation into numerous mini-stacks, which surround the PV, and hijacks host Golgi-derived vesicles within the PV. These vesicles, marked with Rab14, Rab30 or Rab43, colocalize with host-derived sphingolipids in the vacuolar space. Scavenged sphingolipids contribute to parasite replication since alterations in host sphingolipid metabolism are detrimental for the parasite's growth. Thus, our results reveal that T. gondii relies on host-derived sphingolipids for its development and scavenges these lipids via Golgi-derived vesicles.
    Molecular biology of the cell 04/2013; · 5.98 Impact Factor
  • Bao Lige, Vera Sampels, Isabelle Coppens
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipid bodies are eukaryotic structures for temporary storage of neutral lipids such as acylglycerols and steryl esters. Fatty acyl-CoA and cholesterol are two substrates for cholesteryl ester (CE) synthesis via the ACAT reaction. The intracellular parasite Toxoplasma gondii is incapable of sterol synthesis and unremittingly scavenges cholesterol from mammalian host cells. We previously demonstrated that the parasite expresses a cholesteryl ester-synthesizing enzyme, TgACAT1. In this article, we identified and characterized a second ACAT-like enzyme, TgACAT2, which shares 56% identity with TgACAT1. Both enzymes are endoplasmic reticulum-associated and contribute to CE formation for storage in lipid bodies. While TgACAT1 preferentially utilizes palmitoyl-CoA, TgACAT2 has broader fatty acid specificity and produces more CE. Genetic ablation of each individual ACAT results in parasite growth impairment whereas dual ablation of ACAT1 and ACAT2 is not tolerated by Toxoplasma. ΔACAT1 and ΔACAT2 parasites have reduced CE levels, fewer lipid bodies, and accumulate free cholesterol, which causes injurious membrane effects. Mutant parasites are particularly vulnerable to ACAT inhibitors. This study underlines the important physiological role of ACAT enzymes to store cholesterol in a sterol-auxotrophic organism such as Toxoplasma, and furthermore opens up possibilities of exploiting TgACAT as targets for the development of antitoxoplasmosis drugs.
    Molecular Microbiology 02/2013; · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apicomplexans are obligate intracellular parasites that actively penetrate their host cells to create an intracellular niche for replication. Commitment to invasion is thought to be mediated by the rhoptries, specialized apical secretory organelles that inject a protein complex into the host cell to form a tight-junction for parasite entry. Little is known about the molecular factors that govern rhoptry biogenesis, their subcellular organization at the apical end of the parasite and subsequent release of this organelle during invasion. We have identified a Toxoplasma palmitoyl acyltransferase, TgDHHC7, which localizes to the rhoptries. Strikingly, conditional knockdown of TgDHHC7 results in dispersed rhoptries that fail to organize at the apical end of the parasite and are instead scattered throughout the cell. While the morphology and content of these rhoptries appears normal, failure to tether at the apex results in a complete block in host cell invasion. In contrast, attachment and egress are unaffected in the knockdown, demonstrating that the rhoptries are not required for these processes. We show that rhoptry targeting of TgDHHC7 requires a short, highly conserved C-terminal region while a large, divergent N-terminal domain is dispensable for both targeting and function. Additionally, a point mutant lacking a key residue predicted to be critical for enzyme activity fails to rescue apical rhoptry tethering, strongly suggesting that tethering of the organelle is dependent upon TgDHHC7 palmitoylation activity. We tie the importance of this activity to the palmitoylated Armadillo Repeats-Only (TgARO) rhoptry protein by showing that conditional knockdown of TgARO recapitulates the dispersed rhoptry phenotype of TgDHHC7 knockdown. The unexpected finding that apicomplexans have exploited protein palmitoylation for apical organelle tethering yields new insight into the biogenesis and function of rhoptries and may provide new avenues for therapeutic intervention against Toxoplasma and related apicomplexan parasites.
    PLoS Pathogens 02/2013; 9(2):e1003162. · 8.14 Impact Factor
  • Source
    Zhicheng Dou, Isabelle Coppens, Vern B Carruthers
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cryptosporidium spp. are responsible for devastating diarrhea in immunodeficient individuals. In the intestinal tract, the developmental stages of the parasite are confined to the apical surfaces of epithelial cells. Upon invasion, Cryptosporidium incorporates the microvillous membrane of the enterocyte to form the parasitophorous vacuole (PV) and sequesters itself from the host cytoplasm by rearranging the host cytoskeleton. Cryptosporidium parvum has minimal anabolic capabilities and relies on transporters and salvage pathways to meet its basic metabolic requirements. The cholesterol salvage pathway is crucial for the development of protozoan parasites. In this study, we have examined the sources of cholesterol from C. parvum infecting enterocytes. We illustrated that the intracellular stages of Cryptosporidium as well as the oocysts shed by the host, contain cholesterol. Incubation of infected enterocytes in lipoprotein-free medium impairs parasite development and results in substantial decrease in cholesterol content associated with the PV. Among lipoproteins, LDL constitutes an important source of cholesterol for Cryptosporidium. Dietary cholesterol incorporated into micelles is internalized into enterocytes by the NPC1L1 transporter. We showed that C. parvum also obtains cholesterol from micelles in enterocytes. Pharmacological blockade of NPC1L1 function by ezetimibe or moderate down-regulation of NPC1L1 expression decreases parasite infectivity. These observations indicate that, despite its dual sequestration from the intestinal lumen and the host cytoplasm, C. parvum can, in fact, obtain cholesterol both from the gut's lumen and the host cell. This study highlights the evolutionary advantages for epicellular pathogens to access to nutrients from the outside and inside of the host cell.
    Cellular Microbiology 01/2013; · 4.81 Impact Factor
  • Source
    Zhicheng Dou, Isabelle Coppens, Vern B Carruthers
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Control of parasite replication exerted by MHC class I restricted CD8+ T-cells in the liver is critical for vaccination-induced protection against malaria. While many intracellular pathogens subvert the MHC class I presentation machinery, its functionality in the course of malaria replication in hepatocytes has not been characterized. Using experimental systems based on specific identification, isolation and analysis of human hepatocytes infected with P. berghei ANKA GFP or P. falciparum 3D7 GFP sporozoites we demonstrated that molecular components of the MHC class I pathway exhibit largely unaltered expression in malaria-infected hepatocytes until very late stages of parasite development. Furthermore, infected cells showed no obvious defects in their capacity to upregulate expression of different molecular components of the MHC class I machinery in response to pro-inflammatory lymphokines or trigger direct activation of allo-specific or peptide-specific human CD8+ T-cells. We further demonstrate that ectopic expression of circumsporozoite protein does not alter expression of critical genes of the MHC class I pathway and its response to pro-inflammatory cytokines. In addition, we identified supra-cellular structures, which arose at late stages of parasite replication, possessed the characteristic morphology of merosomes and exhibited nearly complete loss of surface MHC class I expression. These data have multiple implications for our understanding of natural T-cell immunity against malaria and may promote development of novel, efficient anti-malaria vaccines overcoming immune escape of the parasite in the liver.
    PLoS ONE 01/2013; 8(9):e75321. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies.
    PLoS ONE 01/2013; 8(2):e55584. · 3.73 Impact Factor
  • Source
    Zhicheng Dou, Isabelle Coppens, Vern B Carruthers
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteases regulate key events during infection by the pervasive intracellular parasite Toxoplasma gondii. Understanding how parasite proteases mature from an inactive zymogen to an active enzyme is expected to inform new strategies for blocking their actions. Herein, we show that T. gondii cathepsin B protease (TgCPB) does not undergo self-maturation, but instead requires the expression of a second papain-family cathepsin protease, TgCPL. Using recombinant enzymes we also show that TgCPL is capable of partially maturing TgCPB in vitro. Consistent with this interrelationship, antibodies with validated specificity detected TgCPB in the lysosome-like vacuolar compartment along with TgCPL. Our findings also establish that TgCPB does not localize to the rhoptries as previously reported. Accordingly, rhoptry morphology and rhoptry protein maturation are normal in TgCPB knockout parasites. Finally, we show that while maturation of TgCPL is independent of TgCPB, it may involve an additional protease(s) in conjunction with self-maturation.
    Journal of Biological Chemistry 12/2012; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are co-infected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in co-infected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our co-infection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma out-competes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.
    Eukaryotic Cell 12/2012; · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma and Chlamydia trachomatis are obligate intracellular pathogens that have evolved analogous strategies to replicate within mammalian cells. Both pathogens are known to extensively remodel the cytoskeleton, and to recruit endocytic and exocytic organelles to their respective vacuoles. However, how important these activities are for infectivity by either pathogen remains elusive. Here, we have developed a novel co-infection system to gain insights into the developmental cycles of Toxoplasma and C. trachomatis by infecting human cells with both pathogens, and examining their respective ability to replicate and scavenge nutrients. We hypothesize that the common strategies used by Toxoplasma and Chlamydia to achieve development results in direct competition of the two pathogens for the same pool of nutrients. We show that a single human cell can harbor Chlamydia and Toxoplasma. In co-infected cells, Toxoplasma is able to divert the content of host organelles, such as cholesterol. Consequently, the infectious cycle of Toxoplasma progresses unimpeded. In contrast, Chlamydia's ability to scavenge selected nutrients is diminished, and the bacterium shifts to a stress-induced persistent growth. Parasite killing engenders an ordered return to normal chlamydial development. We demonstrate that C. trachomatis enters a stress-induced persistence phenotype as a direct result from being barred from its normal nutrient supplies as addition of excess nutrients, e.g., amino acids, leads to substantial recovery of Chlamydia growth and infectivity. Co-infection of C. trachomatis with slow growing strains of Toxoplasma or a mutant impaired in nutrient acquisition does not restrict chlamydial development. Conversely, Toxoplasma growth is halted in cells infected with the highly virulent Chlamydia psittaci. This study illustrates the key role that cellular remodeling plays in the exploitation of host intracellular resources by Toxoplasma and Chlamydia. It further highlights the delicate balance between success and failure of infection by intracellular pathogens in a co-infection system at the cellular level.
    Cellular Microbiology 10/2012; · 4.81 Impact Factor

Publication Stats

3k Citations
704.25 Total Impact Points

Institutions

  • 2006–2013
    • Johns Hopkins University
      • Department of Molecular Microbiology and Immunology
      Baltimore, MD, United States
    • University of Georgia
      Атина, Georgia, United States
  • 2003–2013
    • Johns Hopkins Bloomberg School of Public Health
      • W. Harry Feinstone Department of Molecular Microbiology and Immunology
      Baltimore, Maryland, United States
    • Drexel University College of Medicine
      • Department of Microbiology & Immunology
      Philadelphia, PA, United States
  • 2012
    • University of Michigan
      • Life Sciences Institute
      Ann Arbor, MI, United States
  • 2010
    • University of Vermont
      • Department of Microbiology and Molecular Genetics
      Burlington, VT, United States
  • 2009
    • University of Puerto Rico at Ponce
      Ponce, Ponce, Puerto Rico
    • Concordia University–Ann Arbor
      Ann Arbor, Michigan, United States
  • 2004–2008
    • Seattle Institute for Biomedical and Clinical Research
      Seattle, Washington, United States
    • New York University
      • Department of Pathology
      New York City, NY, United States
  • 2000–2006
    • Yale University
      • • Department of Internal Medicine
      • • Department of Pharmacology
      New Haven, CT, United States
  • 2003–2005
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States
  • 1987–1996
    • Catholic University of Louvain
      Walloon Region, Belgium
  • 1993
    • Universiteit Utrecht
      • Division of Microbiology
      Utrecht, Utrecht, Netherlands