Haiyan Liu

St. Jude Children's Research Hospital, Memphis, TN, United States

Are you Haiyan Liu?

Claim your profile

Publications (10)40.95 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To quantify the immune response of WASP- mice to three different pathogens: influenza A virus, Streptococcus pneumoniae, and Mycobacterium bovis. Primary and secondary T-cell responses to influenza A virus were quantified via tetramer assays. Viral clearance from lung was also measured. Lethality of intranasal inoculation with luminescent S. pneumoniae was assessed by dose escalation and direct luminescence imaging. After intravenous inoculation with M. bovis, residual mycobacteria in lung, liver, and spleen were measured by standard culture methods. The reduced secondary T-cell response to influenza A virus correlates with a relative but not absolute loss of splenic T and B cells similar to that seen in clinical Wiskott-Aldrich Syndrome (WAS), and slower clearance of virus from lung. The reduced magnitude of the secondary T-cell response correlates with a progressive loss of influenza-specific T cells after primary inoculation. WASP- mice show an increased susceptibility to lethal pneumonia after intranasal inoculation with S. pneumoniae, which is among the most frequent causes of clinical complications in WAS patients. WASP- mice clear M. bovis bacille Calmette-Guerin (BCG) more slowly from lung, liver, and spleen. Bone marrow-derived macrophages, however, show normal ex vivo cytokine secretion in response to M. bovis. These results demonstrate that WASP- mice are functionally immunodeficient in regard to three different pathogens, and provide relevant end points for the study of treatment modalities in this model. They also suggest a specific physiologic mechanism, failure to accumulate memory T cells, for at least one of the defective immune responses.
    Experimental Hematology 05/2005; 33(4):443-51. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of T cell activation is the ligation-induced down-modulation of the TCR:CD3 complex. However, little is known about the molecular events that drive this process. The CD3 zeta-chain has been shown to play a unique role in regulating the assembly, transport, and cell surface expression of the TCR:CD3 complex. In this study we have investigated the relationship between CD3zeta and the TCRalphabetaCD3epsilondeltagamma complex after ligation by MHC:peptide complexes. Our results show that there is a significant increase in free surface CD3zeta, which is not associated with the TCR:CD3 complex, after T cell stimulation. This may reflect dissociation of CD3zeta from the TCRalphabetaCD3epsilondeltagamma complex or transport of intracellular CD3zeta directly to the cell surface. We also show that MHC:peptide ligation also results in exposure of the TCR-associated CD3zeta NH2 terminus, which is ordinarily buried in the complex. These observations appears to be dependent on Src family protein tyrosine kinases, which are known to be critical for efficient T cell activation. These data suggest a mechanism by which ligated TCR may be differentiated from unligated TCR and selectively down-modulated.
    The Journal of Immunology 04/2004; 172(6):3662-9. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Can CD4(+) and CD8(+) "memory" T cells that are generated and maintained in the context of low-level virus persistence protect, in the absence of antibody, against a repeat challenge with the same pathogen? Although immune T cells exert effective, long-term control of a persistent gamma-herpesvirus (gammaHV68) in Ig(-/-) microMT mice, subsequent exposure to a high dose of the same virus leads to further low-level replication in the lung. This lytic phase in the respiratory tract is dealt with effectively by the recall of memory T cells induced by a gammaHV68 recombinant (M3LacZ) that does not express the viral M3 chemokine binding protein. At least for the CD8(+) response, greater numbers of memory T cells confer enhanced protection in the M3LacZ-immune mice. However, neither WT gammaHV68 nor the minimally persistent M3LacZ primes the T cell response to the extent that a WT gammaHV68 challenge fails to establish latency in the microMT mice. Memory CD4(+) and CD8(+) T cells thus act together to limit gammaHV68 infection but are unable to provide absolute protection against a high-dose, homologous challenge.
    Proceedings of the National Academy of Sciences 03/2004; 101(7):2017-22. · 9.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by immune dysfunction, thrombocytopenia, and eczema. We used a murine model created by knockout of the WAS protein gene (WASP) to evaluate the potential of gene therapy for WAS. Lethally irradiated, male WASP- animals that received transplants of mixtures of wild type (WT) and WASP- bone marrow cells demonstrated enrichment of WT cells in the lymphoid and myeloid lineages with a progressive increase in the proportion of WT T-lymphoid and B-lymphoid cells. WASP- mice had a defective secondary T-cell response to influenza virus which was normalized in animals that received transplants of 35% or more WT cells. The WASP gene was inserted into WASP- bone marrow cells with a bicistronic oncoretroviral vector also encoding green fluorescent protein (GFP), followed by transplantation into irradiated male WASP- recipients. There was a selective advantage for gene-corrected cells in multiple lineages. Animals with higher proportions of GFP+ T cells showed normalization of their lymphocyte counts. Gene-corrected, blood T cells exhibited full and partial correction, respectively, of their defective proliferative and cytokine secretory responses to in vitro T-cell-receptor stimulation. The defective secondary T-cell response to influenza virus was also improved in gene-corrected animals.
    Blood 12/2003; 102(9):3108-16. · 9.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The consequences for the long-term maintenance of virus-specific CD8+-T-cell memory have been analyzed experimentally for sequential respiratory infections with readily eliminated (influenza virus) and persistent (gammaherpesvirus 68 [gammaHV68]) pathogens. Sampling a broad range of tissue sites established that the numbers of CD8+ T cells specific for the prominent influenza virus D(b)NP(366) epitope were reduced by about half in mice that had been challenged 100 days previously with gammaHV68, though the prior presence of a large CD8+ D(b)NP366+ population caused no selective defect in the gammaHV68-specific CD8+ K(b)p79+ response. Conversely, mice that had been primed and boosted to generate substantial gammaHV68-specific CD8+ D(b)p56+ populations did not show any decrease in prevalence for this set of CD8+ memory cytotoxic T lymphocytes (CTL) at 200 days after respiratory exposure to an influenza A virus. However, in both experiments, the total magnitude of the CD8+-T-cell pool was significantly diminished in those that had been infected with gammaHV68 and the influenza A virus. The broader implications of these findings, especially under conditions of repeated exposure to unrelated pathogens, are explored with a mathematical model which emphasizes that the immune effector and memory "phenome" is a function of the overall infection experience of the individual.
    Journal of Virology 08/2003; 77(14):7756-63. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The murine gammaherpesvirus-68 kills I-A(b-/-) mice despite the presence of virus-specific CD8+ cytotoxic T lymphocytes (CTL). This has raised the possibility that these CTL are functionally abnormal. Here, no difference was observed between I-A(b-/-) mice and I-A(b+/+) controls in virus-specific CTL function, T cell receptor usage, or surface phenotype. Thus CTL immunity was independent of CD4+ T cells in a chronic herpesvirus infection, but was still inadequate to control virus replication.
    Journal of General Virology 03/2003; 84(Pt 2):337-41. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mice (I-A(b-/-)) that lack CD4(+) T cells remain healthy for at least three months after respiratory exposure to the murine gamma-herpesvirus 68 (gammaHV68), then succumb with symptoms of chronic wasting disease. Postexposure challenge of gammaHV68-infected I-A(b+/+) and I-A(b-/-) mice with a recombinant vaccinia virus (Vacc-p56) expressing an antigenic gammaHV68 peptide caused a massive increase in the numbers of D(b)p56-specific CD8(+) T cells. Previous experiments showed that, despite the large numbers of potential CTL effectors, there was little effect on the long-term survival of the CD4-deficient group and no diminution in the level of persistent virus shedding and latency. Comparison of the expanded CD8(+)D(b)p56(+) sets in the I-A(b+/+) and I-A(b-/-) mice indicated that these two T cell populations were not identical. More CD69(high)CD8(+) D(b)p56(+) T cells were found in the CD4-deficient mice, an effect that might be thought to reflect higher Ag load. By contrast, the mean fluorescence intensity of staining for the CD44 glycoprotein was diminished on CD8(+)D(b)p56(+) T cells from the I-A(b-/-) group, the level of CTL activity was lower on a per cell basis, and the relative prevalence of IFN-gamma(+)TNF-alpha(+) T cells detected after in vitro stimulation with the p56 peptide was decreased. Given that this experimental system provides an accessible model for evaluating postexposure vaccination protocols that might be used in diseases like HIV/AIDS, the further need is to clarify the underlying molecular mechanisms and the relative significance of lack of CD4(+) T help vs higher Ag load for these expanded CD8(+) effector populations.
    The Journal of Immunology 05/2002; 168(7):3477-83. · 5.52 Impact Factor
  • Source
    Haiyan Liu, Dario A. A. Vignali
  • Source
  • Source