H. J. Moore

United States Geological Survey, Reston, Virginia, United States

Are you H. J. Moore?

Claim your profile

Publications (46)86.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mars Pathfinder obtained multispectral, elemental, magnetic, and physical measurements of soil and dust at the Sagan Memorial Station during the course of its 83 sol mission. We describe initial results from these measurements, concentrating on multispectral and elemental data, and use these data, along with previous Viking, SNC meteorite, and telescopic results, to help constrain the origin and evolution of Martian soil and dust. We find that soils and dust can be divided into at least eight distinct spectral units, based on parameterization of Imager for Mars Pathfinder (IMP) 400 to 1000 nm multispectral images. The most distinctive spectral parameters for soils and dust are the reflectivity in the red, the red/blue reflectivity ratio, the near-IR spectral slope, and the strength of the 800 to 1000 nm adsorption feature. Most of the Pathfinder spectra are consistent with the presence of poorly crystalline or nanophase ferric oxide(s), sometimes mixed with small but varying degrees of well-crystalline ferric and ferrous phases. Darker soil units appear to be coarser-grained, compacted, and/or mixed with a larger amount of dark ferrous materials relative to bright soils. Nanophase goethite, akaganeite, schwertmannite, and maghemite are leading candidates for the origin of the absorption centered near 900 nm in IMP spectra. The ferrous component in the soil cannot be well-constrained based on IMP data. Alpha proton X-ray spectrometer (APXS) measurements of six soil units show little variability within the landing site and show remarkable overall similarity to the average Viking-derived soil elemental composition. Differences exist between Viking and Pathfinder soils, however, including significantly higher S and Cl abundances and lower Si abundances in Viking soils and the lack of a correlation between Ti and Fe in Pathfinder soils. No significant linear correlations were observed between IMP spectral properties and APXS elemental chemistry. Attempts at constraining the mineralogy of soils and dust using normative calculations involving mixtures of smectites and silicate and oxide minerals did not yield physically acceptable solutions. We attempted to use the Pathfinder results to constrain a number of putative soil and dust formation scenarios, including palagonitization and acid-fog weathering. While the Pathfinder soils cannot be chemically linked to the Pathfinder rocks by palagonitization, this study and McSween et al. [1999] suggest that palagonitic alteration of a Martian basaltic rock, plus mixture with a minor component of locally derived andesitic rock fragments, could be consistent with the observed soil APXS and IMP properties.
    Journal of Geophysical Research, v.105, 1721-1755 (2000). 01/2000;
  • Journal of Geophysical Research Atmospheres 09/1999; 104:8523-8554. · 3.44 Impact Factor
  • Source
    Journal of Geophysical Research Atmospheres 09/1999; · 3.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mars Pathfinder successfully landed at Ares Vallis on July 4, 1997, deployed and navigated a small rover about 100 m clockwise around the lander, and collected data from three science instruments and ten technology experiments. The mission operated for three months and returned 2.3 Gbits of data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. Pathfinder is the best known location on Mars, having been clearly identified with respect to other features on the surface by correlating five prominent horizon features and two small craters in lander images with those in high-resolution orbiter images and in inertial space from two-way ranging and Doppler tracking. Tracking of the lander has fixed the spin pole of Mars, determined the precession rate since Viking 20 years ago, and indicates a polar moment of inertia, which constrains a central metallic core to be between 1300 and ~2000 km in radius. Dark rocks appear to be high in silica and geochemically similar to anorogenic andesites; lighter rocks are richer in sulfur and lower in silica, consistent with being coated with various amounts of dust. Rover and lander images show rocks with a variety of morphologies, fabrics and textures, suggesting a variety of rock types are present. Rounded pebbles and cobbles on the surface as well as rounded bumps and pits on some rocks indicate these rocks may be conglomerates (although other explanations are also possible), which almost definitely require liquid water to form and a warmer and wetter past. Airborne dust is composed of composite silicate particles with a small fraction of a highly magnetic mineral, interpreted to be most likely maghemite; explanations suggest iron was dissolved from crustal materials during an active hydrologic cycle with maghemite freeze dried onto silicate dust grains. Remote sensing data at a scale of a kilometer or greater and an Earth analog correctly predicted a rocky plain safe for landing and roving with a variety of rocks deposited by catastrophic floods, which are relatively dust free. The surface appears to have changed little since it formed billions of years ago, with the exception that eolian activity may have deflated the surface by ~3-7 cm, sculpted wind tails, collected sand into dunes, and eroded ventifacts (fluted and grooved rocks). Pathfinder found a dusty lower atmosphere, early morning water ice clouds, and morning near-surface air temperatures that changed abruptly with time and height. Small scale vortices, interpreted to be dust devils, were observed repeatedly in the afternoon by the meteorology instruments and have been imaged.
    Journal of Geophysical Research Atmospheres 04/1999; 104(E4):8523-8554. · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Remote sensing data at scales of kilometers and an Earth analog were used to accurately predict the characteristics of the Mars Pathfinder landing site at a scale of meters. The surface surrounding the Mars Pathfinder lander in Ares Vallis appears consistent with orbital interpretations, namely, that it would be a rocky plain composed of materials deposited by catastrophic floods. The surface and observed maximum clast size appears similar to predictions based on an analogous surface of the Ephrata Fan in the Channeled Scabland of Washington state. The elevation of the site measured by relatively small footprint delay-Doppler radar is within 100 m of that determined by two-way ranging and Doppler tracking of the spacecraft. The nearly equal elevations of the Mars Pathfinder and Viking Lander 1 sites allowed a prediction of the atmospheric conditions with altitude (pressure, temperature, and winds) that were well within the entry, descent, and landing design margins. High-resolution (~38 m/pixel) Viking Orbiter 1 images showed a sparsely cratered surface with small knobs with relatively low slopes, consistent with observations of these features from the lander. Measured rock abundance is within 10% of that expected from Viking orbiter thermal observations and models. The fractional area covered by large, potentially hazardous rocks observed is similar to that estimated from model rock distributions based on data from the Viking landing sites, Earth analog sites, and total rock abundance. The bulk and fine-component thermal inertias measured from orbit are similar to those calculated from the observed rock size-frequency distribution. A simple radar echo model based on the reflectivity of the soil (estimated from its bulk density), and the measured fraction of area covered by rocks was used to approximate the quasi-specular and diffuse components of the Earth-based radar echos. Color and albedo orbiter data were used to predict the relatively dust free or unweathered surface around the Pathfinder lander compared to the Viking landing sites. Comparisons with the experiences of selecting the Viking landing sites demonstrate the enormous benefit the Viking data and its analyses and models had on the successful predictions of the Pathfinder site. The Pathfinder experience demonstrates that, in certain locations, geologic processes observed in orbiter data can be used to infer surface characteristics where those processes dominate over other processes affecting the Martian surface layer.
    Journal of Geophysical Research Atmospheres 01/1999; 104:8585-8594. · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most of the soil-like materials at the Pathfinder landing site behave like moderately dense soils on Earth with friction angles near 34°-39° and are called cloddy deposits. Cloddy deposits appear to be poorly sorted with dust-sized to granule-sized mineral or rock grains; they may contain pebbles, small rock fragments, and clods. Thin deposits of porous, compressible drifts with friction angles near 26°-28° are also present. Drifts are fine grained. Cohesions of both types of deposits are small. There may be indurated soil-like deposits and/or coated or crusted rocks. Cloddy deposits may be fluvial sediments of the Ares-Tiu floods, but other origins, such as ejecta from nearby impact craters, should be considered. Drifts are probably dusts that settled from the Martian atmosphere. Remote-sensing signatures of the deposits inferred from rover observations are consistent with those observed from orbit and Earth.
    Journal of Geophysical Research Atmospheres 01/1999; 104:8729-8746. · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rocks at the Mars Pathfinder site are probably locally derived. Textures on rock surfaces may indicate volcanic, sedimentary, or impact-generated rocks, but aeolian abration and dust coatings prevent unambiguous interpretation. Multispectral imaging has resolved four spectral classes of rocks: gray and red, which occur on different surfaces of the same rocks; pink, which is probably soil crusts; and maroon, which occurs as large boulders, mostly in the far field. Rocks are assigned to two spectral trends based on the position of peak reflectance: the primary spectral trend contains gray, red, and pink rocks; maroon rocks constitute the secondary spectral trend. The spatial pattern of spectral variations observed is oriented along the prevailing wind direction. The primary spectral trend arises from thin ferric coatings of aeolian dust on darker rocks. The secondary spectral trend is apparently due to coating by a different mineral, probably maghemite or ferrihydrite. A chronology based on rock spectra suggests that rounded maroon boulders constitute the oldest petrologic unit (a flood deposit), succeeded by smaller cobbles possibly deposited by impact, and followed by aeolian erosion and deposition. Nearly linear chemical trends in alpha proton X-ray spectrometer rock compositions are interpreted as mixing lines between rock and adhering dust, a conclusion supported by a correlation between sulfur abundance and red/blue spectral ratio. Extrapolations of regression lines to zero sulfur give the composition of a presumed igneous rock. The chemistry and normative mineralogy of the sulfur-free rock resemble common terrestrial volcanic rocks, and its classification corresponds to andesite. Igneous rocks of this composition may occur with clastic sedimentary rocks or impact melts and breccias. However, the spectral mottling expected on conglomerates or breccias is not observed in any APXS-analyzed rocks. Interpretation of the rocks as andesites is complicated by absence of a ``1 mum'' pyroxene absorption band. Plausible explanations include impact glass, band masking by magnetite, or presence of calcium- and iron-rich pyroxenes and olivine which push the absorption band minimum past the imager's spectral range. The inferred andesitic composition is most similar to terrestrial anorogenic icelandites, formed by fractionation of tholeiitic basaltic magmas. Early melting of a relatively primitive Martian mantle could produce an appropriate parent magma, supporting the ancient age of Pathfinder rocks inferred from their incorporation in Hesperian flood deposits. Although rocks of andesitic composition at the Pathfinder site may represent samples of ancient Martian crust, inferences drawn about a necessary role for water or plate tectonics in their petrogenesis are probably unwarranted.
    Journal of Geophysical Research Atmospheres 01/1999; · 3.44 Impact Factor
  • 03/1998;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The successful landing of the Mars Pathfinder spacecraft on Mars allows the review of the process of selecting the landing site and assessing predictions made for the site based on Viking and Earth-based data. Selection of the landing site for Mars Pathfinder was a two-phase process. The first phase took place from October 1993 to June 1994 and involved: initial identification of engineering constraints, definition of environmental conditions at the site for spacecraft design, and evaluation of the scientific potential of different landing sites. This phase culminated with the first "Mars Pathfinder Landing Site Workshop", held at the Lunar and Planetary Institute in Houston, Texas on April 18-19, 1994, in which suggested approaches and landing sites were solicited from the entire scientific community. A preliminary site was selected by the project for design purposes in June 1994. The second phase took place from July 1994 to March 1996 and involved: developing criteria for evaluating site safety using images and remote sensing data, testing of the spacecraft and landing subsystems (with design improvements) to establish quantitative engineering constraints on landing site characteristics, evaluating all potential landing sites on Mars, and certification of the site by the project. This phase included a second open workshop, "Mars Pathfinder Landing Site Workshop II: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington" held in Spokane and Moses Lake September 24-30, 1995 and formal acceptance of the site by NASA Headquarters. Engineering constraints on Pathfinder landing sites were developed from the initial design of the spacecraft and the entry, descent and landing scenario. The site must be within 5 degrees of the subsolar latitude at the time of landing (15N for maximum solar power and flexible communications with Earth. It also must be below 0 km elevation to enable enough time for the parachute to bring the lander to the proper terminal velocity for landing. The entire landing ellipse, which is 70 km by 200 km due to navigational, ephemeris and atmospheric uncertainties, must be free of steep slopes, scarps and obvious hazards in Viking orbiter images, have acceptable radar reflectivity, moderate rock abundances and have little or no dust. Scientific considerations of the Mars Pathfinder payload and mission indicate that analyses of "grab bag" samples at the mouths of outflow channels can offer a first order assessment of a variety of rock types on Mars. Highland sites offer the advantage of in situ analysis of ancient rocks on Mars that record crustal differentiation and the nature of the early environment. Dark gray sites offer the potential of analyzing unweathered and unoxidized materials. Following a general assessment of the safety of different sites, a preliminary selection of a "grab bag" site was made. This site, Ares Vallis, is near the mouth of an outflow channel that may contain ancient Noachian terrain, Hesperian ridged plains, and reworked channel materials. All potential landing sites on Mars that met basic safety criteria were analyzed in detail. Sites (100 by 200 km target ellipses) were considered safe if they were below 0 km elevation, were free of obvious hazards (high relief surface features) in high-resolution (< 50 m/pixel) Viking orbiter images and had acceptable reflectivity and roughness at radar wavelengths, high thermal inertia, moderate rock abundance, low red to violet ratio, and low albedo. Only 4 sites on Mars met all the above criteria, which included 1995 opposition 3.5 cm delay-Doppler radar data. Complete data were evaluated for 7 sites and the Viking landing sites for comparison for all the above criteria as well as crater abundance, hill and mesa abundance, slopes over meter to kilometer scales, low altitude winds (from global circulation models and slopes), the size-frequency distribution of large rocks, as well as rover trafficability and science potential. Discussion of potential hazards at Ares Vallis using a variety of data sets (including radar) at a second open workshop, indicated this site cannot be shown to be any more hazardous than the Viking landing sites. Field trips to the Channeled Scabland and the Ephrata Fan, analogs for Ares Vallis and the landing site, respectively, provided valuable insight into possible geologic processes and potential surface characteristics. Three sites met all the data requirements and safety criteria for landing Pathfinder. Ares Vallis was selected by the project because it appeared acceptably safe (although it appeared to have greater rock abundances than other sites, its elevation was likely the best known) and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which would enable addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early martian environment and its subsequent evolution. The selection was reviewed by an external board at a number of meetings and accepted, and the site was approved by NASA Headquarters. Data gathered by the Pathfinder lander' and rover provides the opportunity to test the predictions made for the site in the selection process based on remote observations from Earth, orbit, and the surface. The discussion below is taken from Golombek et al. to which the reader is referred for a more complete discussion and a complete list of references, which are omitted here for brevity. Many characteristics of the landing site are consistent with its being shaped and deposited by the Ares and Tiu catastrophic floods. The rocky surface is consistent a depositional plain comprising semi-rounded pebbles, cobbles and tabular boulders (some of which appear imbricated and/or inclined in the direction of flow) that appear similar to depositional plains in terrestrial catastrophic floods. The Twin Peaks appear to be streamlined hills in lander images, which is consistent with interpretations of larger hills in Viking orbiter images of the region that suggest the lander is on the flank of a broad, gentle ridge trending northeast from Twin Peaks. This ridge, which is the rise to the north of the lander, is aligned in the downstream direction from the Ares and Tiu Valles floods, and may be a debris tail deposited in the wake of the Twin Peaks. Channels visible throughout the scene may be a result of late stage drainage. As predicted by delay-Doppler radar measurements and tracking results, the average elevation of the center of the site was about the same as Viking Lander I relative to the 6.1 mbar geoid. The Doppler tracking and two-way ranging estimate for the elevation of the spacecraft is only 45 in lower than the Viking I Lander and within 100 in of that expected, which is within the uncertainties of the measurements. After landing, surface pressures and winds (5-10 m/s) were found to be similar to expectations based on Viking data, although temperatures were about 10 K warmer. The temperature profile below 50 km was also roughly 20 K warmer. As a result, predicted densities were 5% higher near the surface and up to 40% lower at 50 km but within the entry, descent and landing design margins. The populations of craters and small hills and the slopes of the hills measured in high-resolution (38 m/pixel) Viking orbiter images and the radar derived slopes of the landing site are all consistent with observations of these properties in the lander images. A rocky surface was expected from Viking Infra-Red Thermal Mapper (IRTM) observations and comparisons with the Viking landing sites. The observed cumulative fraction of area covered by rocks with diameters greater than 3 cm and heights greater than 0.5 in (potentially hazardous to landing) at Ares is similar to that predicted by IRTM observations and models of Viking lander and Earth analog rock size-frequency distributions. The IRTM prediction postulated an effective thermal inertia of 30 (10(exp -3) cgs units - cal/cubic cm/s(exp 0.5)/K) for the rock population, but we obtain a slightly different effective thermal inertia for the actual rock population. The validity of interpretations of radar echoes prior to landing are supported by a simple radar echo model, an estimate of the reflectivity of the soil from its bulk density, and the fraction of area covered by rocks. In the calculations, the soil produces the quasi-specular echo and the rocks produce the diffuse echo. The derived quasispecular cross section is comparable to the cross-sections and reflectivities reported for 3.5-cm wavelength observations. The model yields a diffuse echo that is modestly larger than the polarized diffuse echo reported for 3.5-cm wavelength observations. At 12.5-cm wavelength, similar rock populations at Ares and the Viking I site were expected because the diffuse echoes are comparable, but the large normal reflectivities suggests that bulk densities of the soils at depth are greater than those at the surface. We also obtain a fine-component inertia near 8.4 which agrees with the fine-component inertia of 8.7 (in 10(exp -3) cgs units) estimated from thermal observations from orbit by the IRTM; for this estimate, we used a bulk thermal inertia of 10.4 for the landing site, an effective thermal inertia near 40 (10(exp -3) cgs units) for the rock population, and a graphical representation of Kieffer's model. Color and albedo data for Ares suggested surfaces of materials at Ares Vallis would be relatively dust free or unweathered prior to landing compared with the materials at the Viking landing sites. This suggestion is supported by the abundance of relatively dark-gray rocks at Ares and their relative rarity at the Viking landing sites, where rocks are commonly coated with bright red dust. Finally, the 40 km long Ephrata Fan of the Channeled Scabland in Washington state, which was deposited where c
    02/1998;
  • 01/1998;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemical analyses returned by Mars Pathfinder indicate that some rocks may be high in silica, implying differentiated parent materials. Rounded pebbles and cobbles and a possible conglomerate suggest fluvial processes that imply liquid water in equilibrium with the atmosphere and thus a warmer and wetter past. The moment of inertia indicates a central metallic core of 1300 to 2000 kilometers in radius. Composite airborne dust particles appear magnetized by freeze-dried maghemite stain or cement that may have been leached from crustal materials by an active hydrologic cycle. Remote-sensing data at a scale of generally greater than approximately 1 kilometer and an Earth analog correctly predicted a rocky plain safe for landing and roving with a variety of rocks deposited by catastrophic floods that are relatively dust-free.
    Science 01/1998; 278(5344):1743-8. · 31.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemical analyses returned by Mars Pathfinder indicate that some rocks may be high in silica, implying differentiated parent materials. Rounded pebbles and cobbles and a possible conglomerate suggest fluvial processes that imply liquid water in equilibrium with the atmosphere and thus a warmer and wetter past. The moment of inertia indicates a central metallic core of 1300 to 2000 kilometers in radius. Composite airborne dust particles appear magnetized by freeze-dried maghemite stain or cement that may have been leached from crustal materials by an active hydrologic cycle. Remote-sensing data at a scale of generally greater than ∼1 kilometer and an Earth analog correctly predicted a rocky plain safe for landing and roving with a variety of rocks deposited by catastrophic floods that are relatively dust-free.
    Science 12/1997; 278(5344):1743-1748. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Mars Pathfinder spacecraft will land on a depositional fan near the mouth of the catastrophic outflow channel, Ares Vallis (19.5 deg N, 32.8 deg W). This site offers the prospect of analyzing a variety of rock types from the ancient cratered highlands, intermediate-age ridged plains, and reworked channel deposits. Analyses of these rocks by Pathfinder instruments will enable first-order scientific questions to be addressed, such as differentiation of the crust, the development of weathering products, and the nature of the early environment, as well as their subsequent evolution on Mars. Constraints imposed by: (1) spacecraft and rover designs (which are robust), (2) entry, descent, and landing, (3) scientific potential at various sites, and (4) safety were important considerations in site selection. Engineering constraints require a 70 km by 200 km smooth, flat (low slopes) area located between 10 deg and 20 deg N that is below 0 km elevation, with average radar reflectivity, little dust, and moderate rock abundance. Three regions on Mars are between 10 deg and 20 deg N and below 0 km elevation: Chryse, Amazonis, and Isidis-Elysitun. Science considerations favor sites at the mouths of outflow channels (grab bag sites offer an assay of rock types on Mars), highland sites (early crustal differentiation and climate), and sites covered with dark (unoxidized) material. Sites are considered safe if they are clearly below 0 km elevation, appear acceptably free of hazards in high-resolution (less than 50 m/pixel) Viking orbiter images and have acceptable reflectivity and roughness at radar wavelengths, thermal inertia, rock abundance, red to violet ratio, and albedo. Recent 3.5-cm wavelength radar observations were used to verify elevation, reflectivity, and roughness within the landing ellipses. Three sites meet all of these criteria: Ares Vallis, Tritonis Lacus, and Isidis. Although Isidis appears to be safer than Tritonis and Ares, the greater scientific potential at Ares Vallis resulted in its selection. Comparisons of the Grand Coulee (channel) and the depositional Ephrata Fan of the Channeled Scabland in eastern Washington, with Ar-es Vallis and its depositional fan also suggest the Ares Vallis landing site is safe and scientifically interesting.
    Journal of Geophysical Research Atmospheres 03/1997; · 3.44 Impact Factor
  • 09/1995;
  • Source
    02/1995; 26:481.
  • Source
    C. M. Weitz, J. J. Plaut, H. J. Moore
    02/1994; 25:1483.
  • Source
    H. J. Moore, J. J. Plaut, T. J. Parker
    [Show abstract] [Hide abstract]
    ABSTRACT: Three sets of radar images have been acquired under different viewing conditions by the Magellan synthetic aperture radar: (1) left-looking with varied incidence angles (cycle 1); (2) right-looking with nearly constant incidence angles (cycle 2); and (3) left-looking with varied incidence angles, most of which were smaller than those in (1) except for those acquired on passes across Maxwell Montes with incidence angles larger than those in (1) (cycle 3). Image displacements in the radar images that are caused by the relief of landforms provide several methods of estimating this relief: (1) monoscopic measurements of foreshortening of landforms that are symmetrical in the plane of the look-direction of the radar (includes radial symmetry); (2) stereoscopic measurements of parallax in same-side image pairs (cycles 1-2 and 3); and (3) measurements of parallax in opposite-side image pairs (cycles 1-2 and/or 2-3). Success in methods 2 and 3 (especially 3) depends on identifying conjugate image points in the two images. Here, we report our preliminary results for five impact craters, seven small volcanic edifices, and two lava flows. The three methods mentioned above lead to the interesting result that Venusian impact craters have depth-diameter ratios like those on Mars rather than those on Earth, but some appear partly filled. Our results for de Lalande and Melba also suggest filling, but there may be other causes for their relatively small depth-diameter ratios. A host of small volcanic edifices have relief that can be crudely estimated using the above methods. Relief/diameter ratios for our cratered cones are about the same as those of Icelandic lava shields; some Venusian cones resemble the Martian shields of Mareotis-Tempe and Ceraunius Fossae, but the Venusian relief diameter ratios are larger. The smallest cratered dome is similar in size and profile to a Martian dome north of Uranius Patera; the smallest cratered cone resembles one in Chryse Planitia. Lava flows on Venus that are thick enough to measure are rare, but we have applied methods 1 and 3 to the huge flow of Ovda Regio and flows of an unusual volcano, Mahuea Tholus.
    02/1993; 24:1003-1004.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magellan has revealed an ensemble of impact craters on Venus that is unique in many important ways. We have compiled a database describing 842 craters on 89 percent of the planet's surface mapped through orbit 2578 (the craters range in diameter from 1.5 to 280 km). We have studied the distribution, size-frequency, morphology, and geology of these craters both in aggregate and, for some craters, in more detail. We have found the following: (1) the spatial distribution of craters is highly uniform; (2) the size-density distribution of craters with diameters greater than or equal to 35 km is consistent with a 'production' population having a surprisingly young age of about 0.5 Ga (based on the estimated population of Venus-crossing asteroids); (3) the spectrum of crater modification differs greatly from that on other planets--62 percent of all craters are pristine, only 4 percent volcanically embayed, and the remainder affected by tectonism, but none are severely and progressively depleted based on size-density distribution extrapolated from larger craters; (4) large craters have a progression of morphologies generally similar to those on other planets, but small craters are typically irregular or multiple rather than bowl shaped; (5) diffuse radar-bright or -dark features surround some craters, and about 370 similar diffuse 'splotches' with no central crater are observed whose size-density distribution is similar to that of small craters; and (6) other features unique to Venus include radar-bright or -dark parabolic arcs opening westward and extensive outflows originating in crater ejecta.
    LPI Contributions. 11/1992; 789:100-101.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An analysis of 144 impact craters on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining craters have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the crater floors. These 144 impact craters were chosen from a possible 164 craters with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at craters below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all craters with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles.
    LPI Contributions. 11/1992; 789:129-131.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Areas of Venus imaged by Magellan radar with multiple viewing conditions provide unique data that will contribute to the solution of venusian geologic problems and provide a basis for quantitative comparison of venusian landforms with those on other planetary bodies. Three sets of images with different viewing conditions have been acquired: (1) left-looking with variable incidence angles (cycle 1 profile), (2) right-looking with nearly constant incidence angles (cycle 2 profile), and (3) left-looking with variable incidence angles that are almost always smaller than those in (1) (cycle 3 profiles). The unique data provided by paired images of the same scene with different incidence angles arises from image displacements caused by the relief of individual landforms at scales comparable to the ground-range and azimuth resolutions of the images. There are two aspects of the data: (1) Stereopsis achieved by simultaneous viewing of paired left-looking images of the same scene permits three-dimensional perception and interpretation of the morphologies of landforms at resolutions much finer than the altimetry footprints. (2) Measurements of differences of image displacements (parallax) on paired images with known imaging geometries provide quantitative estimates of the relief and shapes of landforms. The potential scientific contributions of the data can be grouped into two interrelated classes: (A) geologic mapping, analysis, and interpretation and (B) topical studies that involve topographic measurements. Stereopsis, without quantitative measurements, enhances geologic mapping, analysis, and interpretation of the rock units of Venus to a degree that cannot be overestimated. In geologic mapping, assemblages of landforms, assessments of backscatter and variations in backscatter, and fine-scale topography are used to define and characterize geologic map units that represent laterally continuous deposits or rock units. Stereopsis adds the important dimension of local relief for characterization of geologic units at a scale that is not possible with Magellan altimetry or products derived from the altimetry. Relative ages of the geologic units are determined using the well-known principles of superposition and intersection. Here, the perception of relief is invaluable because superposition relations among the geological units are more readily and clearly established. The recognition of folds, faults, and fault systems, regardless of their orientations, is facilitated with stereopsis so that sequences of deformation of the geologic units can be determined and structural analyses vastly improved. Shapes of landforms are readily perceived so that they can be properly interpreted. The end result of the mapping, analyses, and interpretations is a geologic history of Venus that includes the sequences of formation and deformation of various geologic units. Measurements of relief at the finest scale possible are necessary for numerous topical studies. Standard altimetry will provide the necessary information on the relief of most large landforms, but it tends to underestimate the relief of small landforms and distorts their shapes. Although special processing of the altimeter echoes improves the estimates of the relief and shapes of some landforms, there are uncertainties in the interpretations of the echoes. Examples of topical studies requiring measurements of relief are given.
    LPI Contributions. 11/1992; 789:71-72.

Publication Stats

947 Citations
86.31 Total Impact Points

Institutions

  • 1999
    • United States Geological Survey
      Reston, Virginia, United States
  • 1992–1993
    • California Institute of Technology
      • Jet Propulsion Laboratory
      Pasadena, CA, United States