Hiroyuki Fujiki

Muroran Institute of Technology, Муроран, Hokkaidō, Japan

Are you Hiroyuki Fujiki?

Claim your profile

Publications (2)6.87 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: This study investigated the role of macrophage migration inhibitory factor (MIF) in fracture repair using MIF gene-deficient mice (MIF KO). Fracture healing was delayed in MIF KO, and this was mainly due to the delay in the mineralization of osteoid within the fracture callus. We previously reported that the expression of macrophage migration inhibitory factor (MIF) was up-regulated during the fracture healing process in rats. However, its role in the pathophysiology of this process remained unclear. The aim of the present study was to clarify the role of MIF in the fracture healing process using MIF gene-deficient mice (MIF KO). Bone repair in wild-type mice (WT) and MIF KO (n = 70, respectively) was investigated using a tibia fracture model. Radiographic, biomechanical, histological, bone histomorphometric, and molecular analyses were performed. Post-fracture biomechanical testing showed that maximum load and stiffness were significantly lower in MIF KO than in WT on day 42. However, similar levels were observed between the two groups on day 84. Bone histomorphometric analysis revealed significantly higher osteoid volume, a lower mineral apposition rate, and smaller numbers of osteoclasts in the MIF KO callus compared to the WT callus. The messenger ribonucleic acid expressions of matrix metalloproteinase (MMP)-2, membranous type 1-MMP, cathepsin K, and tissue nonspecific alkaline phosphatase were found to be significantly suppressed in the MIF KO callus. The results of the present study suggest that delayed fracture healing in MIF KO was mainly attributable to a delay in osteoid mineralization.
    Osteoporosis International 06/2011; 22(6):1955-65. · 4.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: This study evaluated the in vivo influence of a poly-(2-Acrylamido-2-methylpropane sulfonic acid)/poly-(N,N'-dimetyl acrylamide) (PAMPS/PDMAAm) double-network (DN) hydrogel on counterface cartilage in rabbit knee joints and its ex vivo friction properties on normal cartilage. In the first experiment, the DN gel was implanted in a surgically created defect in the femoral trochlea of rabbit knee joints and the left knee was used as the control. Evaluations using a confocal laser scanning microscopy demonstrated that the DN gel did not affect the surface microstructure (surface roughness, the number of small pits) of the counterface cartilage in vivo at 4 and 12 weeks. The histology also showed that the DN gel hadno pathological damage on the cartilage matrices and cells at 4 weeks. However, two of the five DN gel-implanted knees showed mild irregularity on the counterface cartilage surface at 12 weeks. In the second experiment, the friction property between the normal and the artificial cartilage was determined using a joint simulator apparatus. The ex vivo mean friction coefficient of the DN gel to normal cartilage was 0.029, while that of the normal-to-normal cartilage articulation was 0.188. The coefficient of the DN gel-to-normal cartilage articulation was significantly lower than that of the normal-to-normal cartilage articulation (p < 0.0001). This study suggested that the PAMPS/PDMAAm DN gel has very low friction coefficient on normal cartilage and has no significant detrimental effects on counterface cartilage in vivo, and can be a promising material to develop the artificial cartilage.
    Journal of Biomedical Materials Research Part A 09/2009; 93(3):1160-8. · 2.83 Impact Factor