Are you Fei Yi?

Claim your profile

Publications (5)7.94 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immortal human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis. 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting. NiS-treated cells exhibited overlapping growth. Compared with that of negative control cells, soft agar colony formation efficiency of NiS-treated cells showed significant increases (P < 0.01) and dose-dependent effects. NiS-treated cells could form tumors in nude mice, and a squamous cell carcinoma was confirmed by histopathological examination. No mutation of exon 2 and exons 2-3, no abnormal expression in p16 gene and mutation of FHIT exons 5-8 and exons 1-4 or exons 5-9 were observed in transformed cells and tumorigenic cells. However, aberrant transcripts or loss of expression of the FHIT gene and Fhit protein was observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in the FHIT gene was confirmed to have a deletion of exon 6, exon 7, exon 8, and an insertion of a 36 bp sequence replacing exon 6-8. The FHIT gene rather than the P16 gene, plays a definite role in nickel carcinogenesis. Alterations of the FHIT gene induced by crystalline NiS may be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation. FHIT may be an important target gene activated by nickel and other exotic carcinogens.
    Biomedical and Environmental Sciences 09/2006; 19(4):277-84. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To provide evidence for illustrating the molecular mechanism of nickel carcinogenesis, and to identify the differential expression of protein in crystalline NiS-induced neoplastic transformation of human bronchial epithelial cell by proteomics technology. Two dimensional electrophoresis (2-DE) and the ImageMaster 3.10 software were used to analyze the differential expression of protein, matrix-assisted laser desorption/inoization-time of flight mass spectrometry (MALDI-TOF-MS) combined with database search was applied to identify protein peroxiredoxin 2 (PDX2) related to malignant transformation. The good 2-DE pattern including resolution and reproducibility was obtained. Nearly 700 expressed proteins per 2-D gel were isolated with molecular weights (MW) ranging from 14,400 to 94,000 KD and pI 3 - 10. A protein PDX2 with MW 21,890 KD, pI 5.66, which was highly expressed in malignantly transformed cell, was identified using MALDI-TOF-MS. PDX2 was involved in malignant transformation of human bronchial epithelial cell induced by crystalline nickel sulfide.
    Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases 09/2005; 23(4):267-70.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To detect the alteration of fragile histidine triad (FHIT) gene and p16 gene during malignant transformation of immortal human bronchial epithelial cell line (16HBE) induced by crystalline nickel sulfide, and study the molecular mechanism of nickel carcinogenesis. Malignant transformed cells and tumorigenic cells were examined for the alteration of FHIT gene and p16 gene by RT-PCR, DNA sequencing and silver staining PCR-SSCP. Compared with those of control 16HBE, neither mutation of exon2 or exon2-3, abnormal expression in p16 gene nor mutation of FHIT exon5, 6, 7 and 8, exon1-4 or exon5-9 were observed in transformed cells and tumorigenic cells. But aberrant transcript or FHIT gene expression loss were observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in FHIT gene, the deletion of exon6, exon7 and exon8 and an insertion of 36 bp sequence replacing exon6-8, was confirmed by sequencing. FHIT gene, not p16 gene, could play a definite role in nickel carcinogenesis. Alterations of FHIT gene induced by crystalline NiS could be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation, and FHIT gene could be one of the important target genes activated by exotic carcinogens.
    Zhonghua zhong liu za zhi [Chinese journal of oncology] 02/2003; 25(1):26-30.
  • Lung Cancer 03/1996; 14:S243. · 3.39 Impact Factor
  • Lung Cancer 03/1996; 14:S244. · 3.39 Impact Factor