Edwin L. Turner

Princeton University, Princeton, New Jersey, United States

Are you Edwin L. Turner?

Claim your profile

Publications (189)782.31 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the photometric properties of a sample of infrared (IR) bright dust obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam (HSC) on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer (WISE), we discovered 48 DOGs with $i - K_\mathrm{s} > 1.2$ and $i - [22] > 7.0$, where $i$, $K_\mathrm{s}$, and [22] represent AB magnitude in the $i$-band, $K_\mathrm{s}$-band, and 22 $\mu$m, respectively, in the GAMA 14hr field ($\sim$ 9 deg$^2$). Among these objects, 31 ($\sim$ 65 %) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show a NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma $z$ = 1.99 $\pm$ 0.45, we calculated their total IR luminosity using an empirical relation between 22 $\mu$m luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 $\pm$ 1.1) $\times$ $10^{13}$ L$_{\odot}$, which classifies them as hyper-luminous infrared galaxies (HyLIRGs). We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 $\mu$m flux greater than 3.0 mJy and with $i$-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log $\phi$ = -6.59 $\pm$ 0.11 [Mpc$^{-3}$]. The IR LF for DOGs including data obtained from the literature is well fitted by a double-power law. The derived lower limit for the IR LD for our sample is $\rho_{\mathrm{IR}}$ $\sim$ 3.8 $\times$ 10$^7$ [L$_{\odot}$ Mpc$^{-3}$] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies (ULIRGs), and that of all DOGs are $>$ 3 %, $>$ 9 %, and $>$ 15 %, respectively.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.2" <= r <= 1.2", or 29 <= r <= 174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r=29-52 AU and r=81.2-145 AU respectively show r^{-3}-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r=40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at \lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r< 50 AU) is derived to be <= 0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new high-resolution ($\sim$0\farcs09) $H$-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0\farcs15 ($\sim$20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of $\sim$90 AU, an inclination of $\sim$35$\degr$ from the plane of the sky, and an approximate P.A. of 15$\degr$ for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2\farcs5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1\arcsec (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0.2" to 1.5" (11 - 81 AU) and the PI image shows a clear axisymmetric depression in polarized intensity at ~ 0.4" (~ 20 AU) from the central star, similar to the ~ 80 AU gap previously reported from HST images. Azimuthal polarized intensity profile also shows the disk beyond 0.2" is almost axisymmetric. We discuss two possible scenarios explaining the origin of the polarized intensity depression: 1) a gap structure may exist at ~ 20 AU from the central star because of shallow slope seen in the polarized intensity profile, and 2) grain growth may be occurring in the inner region of the disk. Multi-band observations at NIR and millimeter/sub-millimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spatially-resolved imaging of Herbig stars and related objects began with HST, but intensified with commissioning of high-contrast imagers on 8-m class telescopes. The bulk of the data taken from the ground have been polarized intensity imagery at H-band, with the majority of the sources observed as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey. Sufficiently many systems have been imaged that we discuss disk properties in scattered, polarized light in terms of groups defined by the IR spectral energy distribution. We find novel phenomena in many of the disks, including spiral density waves, and discuss the disks in terms of clearing mechanisms. Some of the disks have sufficient data to map the dust and gas components, including water ice dissociation products.
    Astrophysics and Space Science 02/2015; 355(2):253-266. DOI:10.1007/s10509-014-2214-2 · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-$\mu$m size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report SMA observations of the dust continuum at 1.3~mm and $^{12}$CO~$J=2\rightarrow1$ line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS~70. PDS~70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of $\sim$65~AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of $\sim$80~AU at 1.3~mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust-disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap-radii of the disk around PDS~70 are potentially formed by several (unseen) accreting planets inducing dust filtration.
    The Astrophysical Journal 11/2014; 799(1). DOI:10.1088/0004-637X/799/1/43 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first resolved near infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric sub-millimeter flux distribution. H-band polarized intensity images show a $\sim$60AU radius scattered light cavity with two pronounced arcs of emission, one from Northeast to Southeast and one smaller, fainter and more distant arc in the Northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the Southwestern rim of the disk cavity. This arc meets the Northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the East-West brightness asymmetry in the H-band data. We also present 0.8-5.4$\mu$m IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0$\pm$1 and measure a low mass accretion rate of 10$^{-8.5}$M$_{\odot}$/yr, both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the mutliwavelength SED of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.
    Research in Astronomy and Astrophysics 11/2014; 14(11):1438-1446. DOI:10.1088/1674-4527/14/11/007 · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars. The stars cover a wide range of ages and spectral types, and include five detections (κ And b, two ~60 M J brown dwarf companions in the Pleiades, PZ Tel B, and CD–35 2722B). For some analyses we add a currently unpublished set of SEEDS observations, including the detections GJ 504b and GJ 758B. We conduct a uniform, Bayesian analysis of all stellar ages using both membership in a kinematic moving group and activity/rotation age indicators. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most of the integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis of the distribution function derived from radial-velocity planets, finding model-dependent values of ~30-100 AU. Finally, we model the entire substellar sample, from massive brown dwarfs to a theoretically motivated cutoff at ~5 M J, with a single power-law distribution. We find that p(M, a)M –0.65 ± 0.60a –0.85 ± 0.39 (1σ errors) provides an adequate fit to our data, with 1.0%-3.1% (68% confidence) of stars hosting 5-70 M J companions between 10 and 100 AU. This suggests that many of the directly imaged exoplanets known, including most (if not all) of the low-mass companions in our sample, formed by fragmentation in a cloud or disk, and represent the low-mass tail of the brown dwarfs.
    The Astrophysical Journal 10/2014; 794(2):159. DOI:10.1088/0004-637X/794/2/159 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased (~600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.
    Publications- Astronomical Society of Japan 09/2014; 67(1). DOI:10.1093/pasj/psu125 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the expected scientific capabilities of CHARIS, a high-contrast integral-field spectrograph (IFS) currently under construction for the Subaru telescope. CHARIS is part of a new generation of instruments, enabled by extreme adaptive optics (AO) systems (including SCExAO at Subaru), that promise greatly improved contrasts at small angular separation thanks to their ability to use spectral information to distinguish planets from quasistatic speckles in the stellar point-spread function (PSF). CHARIS is similar in concept to GPI and SPHERE, on Gemini South and the Very Large Telescope, respectively, but will be unique in its ability to simultaneously cover the entire near-infrared $J$, $H$, and $K$ bands with a low-resolution mode. This extraordinarily broad wavelength coverage will enable spectral differential imaging down to angular separations of a few $\lambda/D$, corresponding to $\sim$$0.\!\!''1$. SCExAO will also offer contrast approaching $10^{-5}$ at similar separations, $\sim$$0.\!\!''1$--$0.\!\!''2$. The discovery yield of a CHARIS survey will depend on the exoplanet distribution function at around 10 AU. If the distribution of planets discovered by radial velocity surveys extends unchanged to $\sim$20 AU, observations of $\sim$200 mostly young, nearby stars targeted by existing high-contrast instruments might find $\sim$1--3 planets. Carefully optimizing the target sample could improve this yield by a factor of a few, while an upturn in frequency at a few AU could also increase the number of detections. CHARIS, with a higher spectral resolution mode of $R \sim 75$, will also be among the best instruments to characterize planets and brown dwarfs like HR 8799 cde and $\kappa$ And b.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) is associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.
    The Astrophysical Journal 09/2014; 795(1). DOI:10.1088/0004-637X/795/1/71 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology. Key Words: Astrobiology-Extrasolar planets-Habitability-Planetary science-Tides. Astrobiology 14, xxx-xxx.
    Astrobiology 08/2014; 14(9). DOI:10.1089/ast.2014.1147 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars observed by HiCIAO on the Subaru Telescope, NIRI on Gemini North, and NICI on Gemini South. The stars cover a wide range of ages and spectral types, and include five detections (kap And b, two ~60 M_J brown dwarf companions in the Pleiades, PZ Tel B, and CD-35 2722 B). We conduct a uniform, Bayesian analysis of the ages of our entire sample, using both membership in a kinematic moving group and activity/rotation age indicators, to obtain posterior age distributions. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis beyond which the distribution function for radial-velocity planets cannot extend, finding model-dependent values of ~30--100 AU. Finally, we treat our entire substellar sample together, modeling it as a single power law distribution. After including GJ 758 B and GJ 504 b, two other HiCIAO detections, a distribution $p(M, a) \propto M^{-0.7 \pm 0.6} a^{-0.8 \pm 0.4}$ (1 sigma errors) from massive brown dwarfs to a theoretically motivated cutoff at ~5 M_J, provides an adequate fit to our data. This suggests that many of the directly imaged exoplanets known, including most (if not all) of the low-mass companions in our sample, formed by fragmentation in a cloud or disk, and represent the low-mass tail of the brown dwarfs.
  • Source
    Mary Anne Limbach, Edwin L. Turner
    [Show abstract] [Hide abstract]
    ABSTRACT: The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anti-correlation of orbital eccentricity with multiplicity (number of planets in the system) among catalogued RV systems. The mean, median and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anti-correlation to the eight planet case rather precisely. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases the eccentricity decreases roughly as a power law of index -1.20. A simple and plausible but ad hoc model of this relationship implies that approximately 80% of the one planet and 25% of the two planet systems in our sample have additional, as yet undiscovered, members. If low eccentricities favor high multiplicities, habitability may be more common in systems with a larger number of planets.
    Proceedings of the National Academy of Sciences 04/2014; 112(1). DOI:10.1073/pnas.1406545111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91, we have performed aperture synthesis 345 GHz continuum and CO(3--2) observations with the Submillimeter Array ($\sim1\arcsec$--3$\arcsec$ resolution), and high-resolution imaging of polarized intensity at the $K_s$-band by using the HiCIAO instrument on the Subaru Telescope ($0\farcs25$ resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 AU and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H$_2$ mass of $2.4\times10^{-3}$ $M_\sun$ in the cold ($T<$30 K) outer part at $65<r<170$ AU by assuming a canonical gas-to-dust mass ratio of 100, although a small amount ($>3\times10^{-9}$ $M_\sun$) of hot ($T\sim$180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3--2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.
    The Astrophysical Journal 02/2014; 783(2). DOI:10.1088/0004-637X/783/2/90 · 6.28 Impact Factor
  • Astronomy and Astrophysics 02/2014; 562:A111. DOI:10.1051/0004-6361/201322119 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most exoplanets detected by direct imaging so far have been characterized by relatively hot (> ~1000 K) and cloudy atmospheres. A surprising feature in some of their atmospheres has been a distinct lack of methane, possibly implying non-equilibrium chemistry. Recently, we reported the discovery of a planetary companion to the Sun-like star GJ 504 using Subaru/HiCIAO within the SEEDS survey. The planet is substantially colder (<600 K) than previously imaged planets, and has indications of fewer clouds, which implies that it represents a new class of planetary atmospheres with expected similarities to late T-type brown dwarfs in the same temperature range. If so, one might also expect the presence of significant methane absorption, which is characteristic of such objects. Here, we report the detection of deep methane absorption in the atmosphere of GJ 504 b, using the Spectral Differential Imaging mode of HiCIAO to distinguish the absorption feature around 1.6 um. We also report updated JHK photometry based on new Ks-band data and a re-analysis of the existing data. The results support the notion that GJ 504 b has atmospheric properties distinct from other imaged exoplanets, and will become a useful reference object for future planets in the same temperature range.
    The Astrophysical Journal Letters 10/2013; 778(1). DOI:10.1088/2041-8205/778/1/L4 · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a discovery of a companion candidate around one of {\it Kepler} Objects of Interest (KOIs), KOI-94, and results of our quantitative investigation of the possibility that planetary candidates around KOI-94 are false positives. KOI-94 has a planetary system in which four planetary detections have been reported by {\it Kepler}, suggesting that this system is intriguing to study the dynamical evolutions of planets. However, while two of those detections (KOI-94.01 and 03) have been made robust by previous observations, the others (KOI-94.02 and 04) are marginal detections, for which future confirmations with various techniques are required. We have conducted high-contrast direct imaging observations with Subaru/HiCIAO in $H$ band and detected a faint object located at a separation of $\sim0.6''$ from KOI-94. The object has a contrast of $\sim 1\times 10^{-3}$ in $H$ band, and corresponds to an M type star on the assumption that the object is at the same distance of KOI-94. Based on our analysis, KOI-94.02 is likely to be a real planet because of its transit depth, while KOI-94.04 can be a false positive due to the companion candidate. The success in detecting the companion candidate suggests that high-contrast direct imaging observations are important keys to examine false positives of KOIs. On the other hand, our transit light curve reanalyses lead to a better period estimate of KOI-94.04 than that on the KOI catalogue and show that the planetary candidate has the same limb darkening parameter value as the other planetary candidates in the KOI-94 system, suggesting that KOI-94.04 is also a real planet in the system.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported the direct detection of a low mass companion at a projected separation of 55+-2 AU around the B9 type star {\kappa} Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for the understanding of the formation and evolution of gas giant planets and brown dwarfs on wide-orbits. We present new angular differential imaging (ADI) images of the Kappa Andromedae system at 2.146 (Ks), 3.776 (L'), 4.052 (NB 4.05) and 4.78 {\mu}m (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We derive a more accurate J = 15.86 +- 0.21, H = 14.95 +- 0.13, Ks = 14.32 +- 0.09 mag for {\kappa} And b. We redetect the companion in all our high contrast observations. We confirm previous contrasts obtained at Ks and L' band. We derive NB 4.05 = 13.0 +- 0.2 and M' = 13.3 +- 0.3 mag and estimate Log10(L/Lsun) = -3.76 +- 0.06. We build the 1-5 microns spectral energy distribution of the companion and compare it to seven PHOENIX-based atmospheric models in order to derive Teff = 1900+100-200 K. Models do not set constrains on the surface gravity. ``Hot-start" evolutionary models predict masses of 14+25-2 MJup based on the luminosity and temperature estimates, and considering a conservative age range for the system (30+120-10 Myr). ``warm-start" evolutionary tracks constrain the mass to M >= 11 MJup. Therefore, the mass of {\kappa} Andromedae b mostly falls in the brown-dwarf regime, due to remaining uncertainties in age and mass-luminosity models. According to the formation models, disk instability in a primordial disk could account for the position and a wide range of plausible masses of {\kappa} And b.

Publication Stats

4k Citations
782.31 Total Impact Points

Institutions

  • 1991–2014
    • Princeton University
      • Department of Astrophysical Sciences
      Princeton, New Jersey, United States
  • 2013
    • College of Charleston
      • Department of Physics and Astronomy
      Charleston, South Carolina, United States
    • University of Amsterdam
      • Astronomical Institute Anton Pannekoek
      Amsterdamo, North Holland, Netherlands
  • 2012
    • Instituto Nacional de Técnica Aeroespacial
      • Department of Astrophysics
      Torrejon de Ardos, Madrid, Spain
  • 1992–2012
    • National Astronomical Observatory of Japan
      Edo, Tōkyō, Japan
  • 2001–2011
    • The University of Tokyo
      • • Division of Climate System Research
      • • Institute for the Physics and Mathematics of the Universe (IPMU)
      • • Department of Physics
      Edo, Tōkyō, Japan
    • Columbia University
      New York City, New York, United States
  • 2010
    • Academia Sinica
      • Institute of Astronomy and Astrophysics
      T’ai-pei, Taipei, Taiwan
  • 1999–2009
    • University of Melbourne
      • School of Physics
      Melbourne, Victoria, Australia
  • 2003
    • Space Telescope Science Institute
      Baltimore, Maryland, United States
  • 1996–2002
    • TRI/Princeton
      Princeton, New Jersey, United States
  • 1995–2001
    • Kyoto University
      • Department of Astronomy
      Kioto, Kyōto, Japan
  • 2000
    • Tohoku University
      • Astronomical Institute
      Sendai, Kagoshima, Japan