Are you Dong Li?

Claim your profile

Publications (4)8.03 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypertriglyceridemia has recently been considered to be an independent risk factor for coronary heart disease, in which apolipoprotein (Apo)CIII is one of the major contributory factors, as it is strongly correlated with plasma triglyceride levels. Although ApoCIII transgenic mice have been generated as an animal model for the study of hypertriglyceridemia, the features of lipoprotein metabolism in mice differ greatly from those in humans. Because of the great similarity between pigs and humans with respect to lipid metabolism and cardiovascular physiology, we generated transgenic miniature pigs expressing human ApoCIII by the transfection of somatic cells combined with nuclear transfer. The expression of human ApoCIII was detected in the liver and intestine of the transgenic pigs. As compared with nontransgenic controls, transgenic pigs showed significantly increased plasma triglyceride levels (83 ± 36 versus 38 ± 4 mg·dL(-1), P < 0.01) when fed a chow diet. Plasma lipoprotein profiling by FPLC in transgenic animals showed a higher peak in large-particle fractions corresponding to very low-density lipoprotein/chylomicrons when triglyceride content in the fractions was assayed. There was not much difference in cholesterol content in FPLC fractions, although a large low-density lipoprotein peak was identified in both nontransgenic and transgenic animals, resembling that found in humans. Further analysis revealed markedly delayed clearance of plasma triglyceride, accompanied by significantly reduced lipoprotein lipase activity in post-heparin plasma, in transgenic pigs as compared with nontransgenic controls. In summary, we have successfully generated a novel hypertriglyceridemic ApoCIII transgenic miniature pig model that could be of great value for studies on hyperlipidemia in relation to atherosclerotic disorders.
    FEBS Journal 01/2012; 279(1):91-9. · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.
    Cellular reprogramming. 12/2011; 13(6):513-20.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50μg/mL vitamin C 15h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.
    Biochemical and Biophysical Research Communications 07/2011; 411(2):397-401. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Summary This study was conducted to establish pig embryonic stem (ES)-like cell lines from nuclear transfer blastocysts. A green fluorescent protein (GFP)-expressing cell line was used as the source of donor cells injected into the enucleated oocytes. Blastocysts were collected at D5 (the fifth day), D7 (the seventh day) and D9 (the ninth day). Differential staining was used to assay the viability and development of blastocysts from the 3 days. The number of inner cell mass (ICM) cells increased from 1.83 ± 0.8 (D5) to 5.37 ± 1.2 (D7) to 7.56 ± 1.5 (D9). The expression profiles of embryonic stem (ES) cell factors (OCT4, SOX2, KLF4 and c-MYC) correlated best with the undifferentiated ES state and were identified by qPCR. The expression of the four factors was increased from D5 to D7, whereas the expression decreased from D7 to D9. We tried to isolate ES-like cells from these embryos. However, ES-like cells from the D7 blastocysts grew slowly and expressed alkaline phosphatase. The cells from the D9 blastocysts grew rapidly but did not express alkaline phosphatase. ES-like cells were not isolated from the D5 blastocysts. These results show that the cells from the D7 embryos are pluripotent but grow slowly. The cells from the D9 embryos grow rapidly but start to lose pluripotency.
    Zygote 05/2011; 20(4):347-52. · 1.50 Impact Factor