Are you David A Turner?

Claim your profile

Publications (7)23.55 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous functional MRI studies in individuals with amnestic mild cognitive impairment (AMCI), a putative, prodromal form of Alzheimer's disease, reveal substantial regional changes in brain activation during episodic memory function. Functional MRI was applied to examine changes in brain activation during different stages of episodic memory function using a subsequent memory task in individuals with AMCI relative to older normal controls. We found that the AMCI group displayed greater activation in the right hippocampus but less activation in the frontal cortex relative to the older normal control group during intentional encoding of items that were subsequently recognized. We observed nearly the opposite pattern of results for successful recognition. The AMCI group displayed less activation in the medial temporal cortex but greater activation in the frontal cortex. In addition, the AMCI group showed reduced activation in the medial temporal and frontal cortices during incidental encoding of novel information during recognition. The results of the present study suggest that brain activation differences in individuals with AMCI are modulated by the stage of episodic memory examined (i.e. intentional vs. incidental encoding vs. recognition). These observations may help to clarify some of the conflicting findings regarding brain activation changes in AMCI.
    Dementia and Geriatric Cognitive Disorders 08/2008; 26(2):123-37. · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with ischemic stroke are at risk for developing vascular cognitive impairment ranging from mild impairments to dementia. MRI findings of infarction, white matter hyperintensities, and global cerebral atrophy have been implicated in the development of vascular cognitive impairment. The present study investigated regional gray matter volume differences between patients with ischemic stroke with no cognitive impairment and those with impairment in at least one domain of cognitive function. Ninety-one patients with ischemic stroke participated. Detailed neuropsychological testing was used to characterize cognitive functioning in 7 domains: orientation, attention, working memory, language, visuospatial ability, psychomotor speed, and memory. High-resolution T1-weighted 3-dimensional fast-spoiled gradient recalled structural MRIs were processed using optimized voxel-based morphometry techniques while controlling for lesions. Whole brain voxelwise regional differences in gray matter volume were assessed between patients with stroke with no impaired cognitive domains and patients with stroke with at least one impaired cognitive domain. Logistic regression models were used to assess the contribution of demographic variables, stroke-related variables, and voxel-based morphometry results to classification of cognitive impairment group membership. Fifty-one patients had no impairments in any cognitive domain and 40 patients were impaired in at least one cognitive domain. Logistic regression identified significant contributions to cognitive impairment groups for demographic variables, stroke-related variables, and cognitive domain performance. Voxel-based morphology results demonstrated significant gray matter volume reductions in patients with stroke with one or more cognitive domain impairment compared with patients with stroke without cognitive impairment that was seen mostly in the thalamus with smaller reductions found in the cingulate gyrus and frontal, temporal, parietal, and occipital lobes. These reductions were present after controlling for group differences in age, education, stroke volume, and laterality of stroke. The addition of voxel-based morphometry-derived thalamic volume significantly improved a logistic regression model predicting cognitive impairment group membership when added to demographic variables, stroke-related variables, and cognitive domain performance. These results suggest a central role for the thalamus and lesser roles for other cortical regions in the development of cognitive impairment after ischemic stroke. Indeed, consideration of thalamic volumes adds significant information to the classification of cognitive impaired versus nonimpaired groups beyond information provided by demographic, stroke-related, and cognitive performance measures.
    Stroke 04/2008; 39(3):785-93. · 6.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Information on longitudinal changes in white matter after stroke is limited. The aim of the present study was to quantitatively investigate longitudinal changes in the microstructural integrity of non-lesioned white matter at 1-3 years following ischemic stroke. In a sample of 80 ischemic stroke patients, we obtained diffusion tensor imaging (DTI) measures of fractional anisotropy (FA), an apparent measure of white matter integrity, in radiologically normal-appearing white matter at baseline and 3 years of follow-up. Mixed model regression analysis results showed a significant improvement in FA from baseline during the first 2 years of follow-up that stabilized by the third year of follow-up. These results demonstrate a long-term improvement in apparent white matter integrity following ischemic stroke that continues, at least, into the second year following the insult.
    Neurobiology of aging 01/2007; 27(12):1827-33. · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion tensor imaging (DTI) can detect, in vivo, the directionality of molecular diffusion and estimate the microstructural integrity of white matter (WM) tracts. In this study, we examined WM changes in patients with Alzheimer's disease (AD) and in subjects with amnestic mild cognitive impairment (MCI) who are at greater risk for developing AD. A DTI index of WM integrity, fractional anisotropy (FA), was calculated in 14 patients with probable mild AD, 14 participants with MCI and 21 elderly healthy controls (NC). Voxel-by-voxel comparisons showed significant regional reductions of FA in participants with MCI and AD compared to controls in multiple posterior white matter regions. Moreover, there was substantial overlap of locations of regional decrease in FA in the MCI and AD groups. These data demonstrate that white matter changes occur in MCI, prior to the development of dementia.
    Neurobiology of aging 06/2006; 27(5):663-72. · 5.94 Impact Factor
  • Neurobiology of Aging - NEUROBIOL AGING. 01/2004; 25.
  • Neurobiology of Aging - NEUROBIOL AGING. 01/2004; 25.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional magnetic resonance imaging (fMRI) was used to compare frontal-lobe activation in younger and older adults during encoding of words into memory. Participants made semantic or nonsemantic judgments about words. Younger adults exhibited greater activation for semantic relative to nonsemantic judgments in several regions, with the largest activation in the left inferior frontal gyrus. Older adults exhibited greater activation for semantic judgments in the same regions. but the extent of activation was reduced in left prefrontal regions. In older adults, there was a significant association between behavioral tests of declarative and working memory and extent of frontal activation. These results suggest that age-associated decreases in memory ability may be due to decreased frontal-lobe contributions to the initial encoding of experience.
    Psychology and Aging 04/2002; 17(1):44-55. · 2.73 Impact Factor