Alexei Degterev

Tufts University, Бостон, Georgia, United States

Are you Alexei Degterev?

Claim your profile

Publications (76)608.65 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
    Chemistry & biology 08/2015; DOI:10.1016/j.chembiol.2015.07.017 · 6.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RIPK1 and RIPK3, two closely related RIPK family members, have emerged as important regulators of pathologic cell death and inflammation. In the current work, we report that the Bcr-Abl inhibitor and anti-leukemia agent ponatinib is also a first-in-class dual inhibitor of RIPK1 and RIPK3. Ponatinib potently inhibited multiple paradigms of RIPK1- and RIPK3-dependent cell death and inflammatory tumor necrosis factor alpha (TNF-α) gene transcription. We further describe design strategies that utilize the ponatinib scaffold to develop two classes of inhibitors (CS and PN series), each with greatly improved selectivity for RIPK1. In particular, we detail the development of PN10, a highly potent and selective "hybrid" RIPK1 inhibitor, capturing the best properties of two different allosteric RIPK1 inhibitors, ponatinib and necrostatin-1. Finally, we show that RIPK1 inhibitors from both classes are powerful blockers of TNF-induced injury in vivo. Altogether, these findings outline promising candidate molecules and design approaches for targeting RIPK1- and RIPK3-driven inflammatory pathologies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 03/2015; 10(11). DOI:10.1016/j.celrep.2015.02.052 · 8.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported encouraging in vitro and in vivo anti-cancer activity of N-((3-chloro-2-hydroxy-5-nitrophenyl)carbamothioyl)benzamide (termed PITENIN-1). In the current work, we describe the structure–activity relationship study of the PIT-1 series, based on the replacement of a central thiourea unit with 1,2,3-triazole, which leads to increased liver microsomal stability, drug likeness and toxicity towards cancer cells.
    Medicinal Chemistry Communication 07/2014; 5(9). DOI:10.1039/C4MD00109E · 2.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Akt (protein kinase B) and mammalian target of rapamycin (mTOR) have been implicated in the pathogenesis of cell death and cognitive outcome after cerebral contusion in mice; however, a role for Akt/mTOR in concussive brain injury has not been well characterized. In a mouse closed head injury (CHI) concussion traumatic brain injury (TBI) model, phosphorylation of Akt (p-Akt), mTOR (p-mTOR), and S6RP (p-S6RP) was increased by 24 hours in cortical and hippocampal brain homogenates (P<0.05 versus sham for each), and p-S6RP was robustly induced in IBA-1+ microglia and glial fibrillary acidic protein-positive (GFAP+) astrocytes. Pretreatment with inhibitors of Akt or mTOR individually by the intracerebroventricular route reduced phosphorylation of their respective direct substrates FOXO1 (P<0.05) or S6RP (P<0.05) after CHI, confirming the activity of inhibitors. Rapamycin pretreatment significantly worsened hidden platform (P<0.01) and probe trial (P<0.05) performance in CHI mice. Intracerebroventricular administration of necrostatin-1 (Nec-1) before CHI increased hippocampal Akt and S6RP phosphorylation and improved place learning (probe trials, P<0.001 versus vehicle), whereas co-administration of rapamycin or Akt inhibitor with Nec-1 eliminated improved probe trial performance. These data suggest a beneficial role for Akt/mTOR signaling after concussion TBI independent of cell death that may contribute to improved outcome by Nec-1.Journal of Cerebral Blood Flow & Metabolism advance online publication, 18 June 2014; doi:10.1038/jcbfm.2014.113.
    Journal of Cerebral Blood Flow & Metabolism 06/2014; 34(9). DOI:10.1038/jcbfm.2014.113 · 5.34 Impact Factor
  • Galina Dvoriantchikova · Alexei Degterev · Dmitry Ivanov
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal ischemia-reperfusion (IR) injury remains a common cause of blindness and has a final pathway of retinal ganglion cell (RGC) death by apoptosis and necrosis. RGC apoptosis was intensively studied in IR injury, while RGC necrosis did not receive nearly enough consideration since it was viewed as an accidental and unregulated cellular event. However, there is evidence that necrosis, like apoptosis, can be implemented by a programmed mechanism. In this study, we tested the role of RGC programmed necrosis (necroptosis) in IR-induced retinal injury. We employed the mouse model of retinal IR injury for in vivo experiments. The oxygen and glucose deprivation (OGD) model was used as an IR model in vitro. Primary RGCs were isolated by an immunopanning technique. Necrostatin 1 (Nec1) was used to inhibit necroptosis in in vitro and in vivo experiments. The changes in gene expression were assessed by quantitative RT-PCR. The distribution of proteins in the retina and in RGC cultures was evaluated by immunohistochemistry and immunocytochemistry, respectively. Our data suggest that proteins (Ripk1 and Ripk3), which initiate necroptosis, were present in normal and ischemic RGCs. Treatment with Nec1 significantly reduced retinal damage after IR. Increased RGC survival and reduced RGC necrosis following OGD were observed in Nec1-treated cultures. We found significantly reduced expression of genes coding pro-inflammatory markers Il1b, Ccl5, Cxcl10, Nos2 and Cybb in Nec1-treated ischemic retinas. Thus, our findings suggest that RGC necroptosis contributes to retinal damage after IR through direct loss of cells and induction of associated inflammatory responses.
    Experimental Eye Research 04/2014; 123. DOI:10.1016/j.exer.2014.04.009 · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pathogen recognition by the innate immune system initiates the production of pro-inflammatory cytokines but can also lead to programmed host cell death. Necroptosis, a caspase-independent cell death pathway, can contribute to host defense against pathogens or cause damage to host tissues. Receptor-interacting Protein (RIP1) is a serine/threonine kinase that integrates inflammatory and necroptotic responses. To investigate mechanisms of RIP1-mediated activation of immune cells, we established a genetic screen based on RIP1-mediated necroptosis in wild-derived MOLF mice, which diverged from classical laboratory mice over a million years ago. When compared to C57BL/6, MOLF macrophages were resistant to RIP1-mediated necroptosis induced by TLRs. Using a forward genetic approach in a backcross panel of mice, we identified CYLD, a deubiquitinase known to act directly on RIP1 and promote necroptosis in TNFR signaling, as the gene conferring the trait. We demonstrate that CYLD is required for TLR-induced necroptosis and describe a novel mechanism by which CYLD is downregulated at the transcriptional level in MOLF macrophages to confer protection from necroptosis.
    Journal of Biological Chemistry 04/2014; 289(20). DOI:10.1074/jbc.M114.547547 · 4.57 Impact Factor
  • Source
    Q Liu · J Qiu · M Liang · J Golinski · K van Leyen · J E Jung · Z You · E H Lo · A Degterev · M J Whalen
    [Show abstract] [Hide abstract]
    ABSTRACT: Necroptosis is a newly described form of regulated necrosis that contributes to neuronal death in experimental models of stroke and brain trauma. Although much work has been done elucidating initiating mechanisms, signaling events governing necroptosis remain largely unexplored. Akt is known to inhibit apoptotic neuronal cell death. Mechanistic target of rapamycin (mTOR) is a downstream effector of Akt that controls protein synthesis. We previously reported that dual inhibition of Akt and mTOR reduced acute cell death and improved long term cognitive deficits after controlled-cortical impact in mice. These findings raised the possibility that Akt/mTOR might regulate necroptosis. To test this hypothesis, we induced necroptosis in the hippocampal neuronal cell line HT22 using concomitant treatment with tumor necrosis factor α (TNFα) and the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. TNFα/zVAD treatment induced cell death within 4 h. Cell death was preceded by RIPK1-RIPK3-pAkt assembly, and phosphorylation of Thr-308 and Thr473 of AKT and its direct substrate glycogen synthase kinase-3β, as well as mTOR and its direct substrate S6 ribosomal protein (S6), suggesting activation of Akt/mTOR pathways. Pretreatment with Akt inhibitor viii and rapamycin inhibited Akt and S6 phosphorylation events, mitochondrial reactive oxygen species production, and necroptosis by over 50% without affecting RIPK1-RIPK3 complex assembly. These data were confirmed using small inhibitory ribonucleic acid-mediated knockdown of AKT1/2 and mTOR. All of the aforementioned biochemical events were inhibited by necrostatin-1, including Akt and mTOR phosphorylation, generation of oxidative stress, and RIPK1-RIPK3-pAkt complex assembly. The data suggest a novel, heretofore unexpected role for Akt and mTOR downstream of RIPK1 activation in neuronal cell death.
    Cell Death & Disease 02/2014; 5(2):e1084. DOI:10.1038/cddis.2014.69 · 5.18 Impact Factor
  • Source
    Nature 02/2014; 506(7489):E4-6. DOI:10.1038/nature13024 · 42.35 Impact Factor
  • Alexei Degterev · Wen Zhou · Jenny L Maki · Junying Yuan
    [Show abstract] [Hide abstract]
    ABSTRACT: Necrosis is a primary form of cell death in a variety of human pathologies. The deleterious nature of necrosis, including its propensity to promote inflammation, and the relative lack of the cells displaying necrotic morphology under physiologic settings, such as during development, have contributed to the notion that necrosis represents a form of pathologic stress-induced nonspecific cell lysis. However, this notion has been challenged in recent years by the discovery of a highly regulated form of necrosis, termed regulated necrosis or necroptosis. Necroptosis is now recognized by the work of multiple labs, as an important, drug-targetable contributor to necrotic injury in many pathologies, including ischemia-reperfusion injuries (heart, brain, kidney, liver), brain trauma, eye diseases, and acute inflammatory conditions. In this review, we describe the methods to analyze cellular necroptosis and activity of its key mediator, RIP1 kinase.
    Methods in Enzymology 01/2014; 545:1-33. DOI:10.1016/B978-0-12-801430-1.00001-9 · 2.19 Impact Factor
  • Galina Dvoriantchikova · Alexei Degterev · Dmitry Ivanov
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal ischemia–reperfusion (IR) injury remains a common cause of blindness and has a final pathway of retinal ganglion cell (RGC) death by apoptosis and necrosis. RGC apoptosis was intensively studied in IR injury, while RGC necrosis did not receive nearly enough consideration since it was viewed as an accidental and unregulated cellular event. However, there is evidence that necrosis, like apoptosis, can be implemented by a programmed mechanism. In this study, we tested the role of RGC programmed necrosis (necroptosis) in IR-induced retinal injury. We employed the mouse model of retinal IR injury for in vivo experiments. The oxygen and glucose deprivation (OGD) model was used as an IR model in vitro. Primary RGCs were isolated by an immunopanning technique. Necrostatin 1 (Nec1) was used to inhibit necroptosis in in vitro and in vivo experiments. The changes in gene expression were assessed by quantitative RT-PCR. The distribution of proteins in the retina and in RGC cultures was evaluated by immunohistochemistry and immunocytochemistry, respectively. Our data suggest that proteins (Ripk1 and Ripk3), which initiate necroptosis, were present in normal and ischemic RGCs. Treatment with Nec1 significantly reduced retinal damage after IR. Increased RGC survival and reduced RGC necrosis following OGD were observed in Nec1-treated cultures. We found significantly reduced expression of genes coding pro-inflammatory markers Il1b, Ccl5, Cxcl10, Nos2 and Cybb in Nec1-treated ischemic retinas. Thus, our findings suggest that RGC necroptosis contributes to retinal damage after IR through direct loss of cells and induction of associated inflammatory responses.
    Experimental Eye Research 01/2014; 123. · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferons (IFNs) are cytokines with powerful immunomodulatory and antiviral properties, but less is known about how they induce cell death. Here, we show that both type I (α/β) and type II (γ) IFNs induce precipitous receptor-interacting protein (RIP)1/RIP3 kinase-mediated necrosis when the adaptor protein Fas-associated death domain (FADD) is lost or disabled by phosphorylation, or when caspases (e.g., caspase 8) are inactivated. IFN-induced necrosis proceeds via progressive assembly of a RIP1-RIP3 "necrosome" complex that requires Jak1/STAT1-dependent transcription, but does not need the kinase activity of RIP1. Instead, IFNs transcriptionally activate the RNA-responsive protein kinase PKR, which then interacts with RIP1 to initiate necrosome formation and trigger necrosis. Although IFNs are powerful activators of necrosis when FADD is absent, these cytokines are likely not the dominant inducers of RIP kinase-driven embryonic lethality in FADD-deficient mice. We also identify phosphorylation on serine 191 as a mechanism that disables FADD and collaborates with caspase inactivation to allow IFN-activated necrosis. Collectively, these findings outline a mechanism of IFN-induced RIP kinase-dependent necrotic cell death and identify FADD and caspases as negative regulators of this process.
    Proceedings of the National Academy of Sciences 07/2013; 110(33). DOI:10.1073/pnas.1301218110 · 9.81 Impact Factor
  • Source
    Jenny L Maki · J Tres Brazell · Xin Teng · Gregory D Cuny · Alexei Degterev
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor Interacting Protein 1 (RIP1) kinase is one of the key mediators of tumor necrosis factor alpha (TNF-α) signaling and is critical for activation of necroptotic cell death. We developed a method for expression of recombinant kinase, utilizing baculovirus co-infection of Cdc37, an Hsp90 co-chaperone, and RIP1-His, followed by a two-step purification scheme. After optimization, 1-3 mg of highly purified RIP1 kinase was typically obtained from a 1 L of Sf9 cells. The recombinant protein displayed kinase activity that was blocked by RIP1 inhibitors, necrostatins. The purified protein was used to develop a simple and robust thermal shift assay for further assessment of RIP1 inhibitors.
    Protein Expression and Purification 03/2013; 89(2). DOI:10.1016/j.pep.2013.03.002 · 1.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract We have developed and characterized micellar formulations of analogs to the recently developed inhibitor of the phosphatidylinositol-3-kinase (PI3K) pathway (N-[(2-hydroxy-5-nitrophenyl)amino]carbonothioyl-3,5-dimethylbenzamide (DM-PIT-1)) for their physicochemical, loading and cytotoxic properties. The first generation inhibitor DM-PIT-1 is a non-lipid, small molecule inhibitor of phosphatidylinositol-3,4,5-triphosphate/Pleckstrin homology (PIP3/PH) binding capable of inhibiting the growth of tumor cells both in vitro and in vivo. A second generation of improved and druggable analogs has been developed. All compounds were successfully loaded (>70%) in PEG2000-PE micelles of 16-20 nm in size with several analogs demonstrating favorable cytotoxic activity against A2780 ovarian carcinoma. These compounds were also successfully incorporated into polyethylene glycol-phosphatidylethanolamine (PEG-PE) micelles combined with surface-bound tumor necrosis factor related apoptosis inducing ligand (TRAIL). The resulting multifunctional combination micelles were able to significantly enhance cytotoxic activity in the TRAIL-resistant A2780 cell line. Additionally, analogs NCL-176 and NCL-240 were effective in inhibiting tumor growth in an in vivo subcutaneous tumor model of A2780. These results indicate the utility of delivering TRAIL and PI3K pathway inhibitors in a combined micellar preparation.
    Drug Delivery 03/2013; 20(2). DOI:10.3109/10717544.2013.766780 · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Necroptosis is a cellular mechanism that mediates necrotic cell death. The receptor-interacting serine/threonine protein kinase 1 (RIP1) is an essential upstream signaling molecule in tumor-necrosis-factor-α-induced necroptosis. Necrostatins, a series of small-molecule inhibitors, suppress necroptosis by specifically inhibiting RIP1 kinase activity. Both RIP1 structure and the mechanisms by which necrostatins inhibit RIP1 remain unknown. Here, we report the crystal structures of the RIP1 kinase domain individually bound to necrostatin-1 analog, necrostatin-3 analog, and necrostatin-4. Necrostatin, caged in a hydrophobic pocket between the N- and C-lobes of the kinase domain, stabilizes RIP1 in an inactive conformation through interactions with highly conserved amino acids in the activation loop and the surrounding structural elements. Structural comparison of RIP1 with the inhibitor-bound oncogenic kinase B-RAF reveals partially overlapping binding sites for necrostatin and for the anticancer compound PLX4032. Our study provides a structural basis for RIP1 inhibition by necrostatins and offers insights into potential structure-based drug design.
    Structure 03/2013; 21(3):493-9. DOI:10.1016/j.str.2013.01.016 · 6.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation.
    PLoS ONE 03/2013; 8(3):e56576. DOI:10.1371/journal.pone.0056576 · 3.23 Impact Factor
  • Jenny L Maki · Alexei Degterev
    [Show abstract] [Hide abstract]
    ABSTRACT: Necroptosis is a novel form of regulated non-apoptotic cell death, which displays morphological features of necrosis. The kinase activity of receptor-interacting protein kinase 1 (RIP1) is a critical component in signaling for necroptosis. The development of assays to evaluate RIP1 kinase activity is important in the further development of existing and novel inhibitors of necroptosis. Here, we describe RIP1 protein expression and purification from mammalian and insect cells as well as two in vitro kinase assays to detect RIP1 kinase activity and inhibition.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 1004:31-42. DOI:10.1007/978-1-62703-383-1_3 · 1.29 Impact Factor
  • Robert D Riehle · Sinziana Cornea · Alexei Degterev
    [Show abstract] [Hide abstract]
    ABSTRACT: Many lipids present in cellular membranes are phosphorylated as part of signaling cascades and participate in the recruitment, localization, and activation of downstream protein effectors. Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) is one of the most important second messengers and is capable of interacting with a variety of proteins through specific PtdIns(3,4,5)P3 binding domains. Localization and activation of these effector proteins controls a myriad of cellular functions including cell survival, proliferation, cytoskeletal rearrangement, and gene expression. Aberrations in the production and metabolism of PtdIns(3,4,5)P3 have been implicated in many human diseases including cancer, diabetes, inflammation, and heart disease. This chapter provides an overview of the role of PtdIns(3,4,5)P3 in cellular regulation and the implications of PtdIns(3,4,5)P3 dysregulation in human diseases. Additionally, recent attempts at targeting PtdIns(3,4,5)P3 signaling via small molecule inhibitors are summarized.
    Advances in Experimental Medicine and Biology 01/2013; 991:105-39. DOI:10.1007/978-94-007-6331-9_7 · 2.01 Impact Factor
  • A Degterev · J L Maki · J Yuan
    Cell death and differentiation 11/2012; 20(2). DOI:10.1038/cdd.2012.133 · 8.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1 inhibitor lacking the IDO-targeting effect. Next, although Nec-1i was ∼100 × less effective than Nec-1 in inhibiting human RIPK1 kinase activity in vitro, it was only 10 times less potent than Nec-1 and Nec-1s in a mouse necroptosis assay and became even equipotent at high concentrations. Along the same line, in vivo, high doses of Nec-1, Nec-1i and Nec-1s prevented tumor necrosis factor (TNF)-induced mortality equally well, excluding the use of Nec-1i as an inactive control. Paradoxically, low doses of Nec-1 or Nec-1i, but not Nec -1s, even sensitized mice to TNF-induced mortality. Importantly, Nec-1s did not exhibit this low dose toxicity, stressing again the preferred use of Nec-1s in vivo. Our findings have important implications for the interpretation of Nec-1-based data in experimental disease models.
    Cell Death & Disease 11/2012; 3(11):e437. DOI:10.1038/cddis.2012.176 · 5.18 Impact Factor

Publication Stats

7k Citations
608.65 Total Impact Points

Institutions

  • 2007–2015
    • Tufts University
      • • Department of Integrative Physiology and Pathobiology
      • • Department of Biochemistry
      Бостон, Georgia, United States
  • 2013
    • Northeastern University
      • Department of Pharmaceutical Sciences
      Boston, MA, United States
  • 2012
    • University of Michigan
      • Life Sciences Institute
      Ann Arbor, MI, United States
  • 2002–2012
    • Harvard University
      • Department of Molecular and Cell Biology
      Cambridge, Massachusetts, United States
  • 2009
    • Universidad Autónoma de San Luis Potosí
      • Instituto de Física
      San Luis Potosí, San Luis Potosi, Mexico
  • 1999–2009
    • Harvard Medical School
      • Department of Cell Biology
      Boston, Massachusetts, United States