David E Clapham

Boston Children's Hospital, Boston, Massachusetts, United States

Are you David E Clapham?

Claim your profile

Publications (259)3698.34 Total impact

  • David E Clapham
    Nature 04/2015; 520(7548). DOI:10.1038/nature14383 · 42.35 Impact Factor
  • Biophysical Journal 01/2015; 108(2):490a. DOI:10.1016/j.bpj.2014.11.2681 · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Cell Calcium 12/2014; 57(3). DOI:10.1016/j.ceca.2014.11.007 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Life essentially runs on electricity: electrical signals cause nerve cells to fire, heart muscles to contract and allow organisms to sense the world around them. These signals are triggered by the movement of positively-charged ions—such as sodium, potassium and calcium—moving into a cell through special ion channels in the cell membrane, which can open and close in response to changes in the voltage across the cell membrane. With few exceptions, voltage sensitive ion channels usually only let one type of ion pass into the cell. But how do ion channels discriminate amongst ions and how did they acquire this ability during evolution? To address these questions, researchers have studied a family of sodium channels from bacteria for the past decade. Here DeCaen et al. describe a new member from this ion channel family from a bacterium called Bacillus alcalophilus. This ion channel does not discriminate between positively-charged ions and B. alcalophilus needs this ion channel for it to dwell in environments that have high levels of potassium or sodium. DeCaen et al. demonstrate that these ion channels can be made selective for sodium or calcium with as little as two small changes in the gene that encodes the ion channel. Furthermore, making similar genetic mutations in related ion channel genes from other Bacillus species has the same effect. DeCaen et al. suggest that Bacillus ion channel genes are easily adapted to function in a variety of environmental conditions with different levels of positively-charged ions. Thus it is easier for Bacillus channels to evolve to be selective for different ions. Bacillus bacteria divide rapidly in warm to hot temperatures and under alkaline pH. DeCaen et al. demonstrate that both of these conditions make Bacillus ion channels easier to open in response to voltage. In addition, DeCaen et al. demonstrate that Bacillus ion channels can be targeted by drugs that impair the ability of the bacteria to grow. These findings—together with other work that revealed where drug molecules bind to ion channels—could potentially guide efforts to develop treatments for illnesses caused by other Bacillus strains, which include anthrax and some forms of food poisoning. DOI: http://dx.doi.org/10.7554/eLife.04387.002
    eLife Sciences 11/2014; 3. DOI:10.7554/eLife.04387 · 8.52 Impact Factor
  • Xinjiang Cai, Xiangbing Wang, David E Clapham
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium signaling is one of the most extensively employed signal transduction mechanisms in life. As life evolved into increasingly complex organisms, Ca(2+) acquired more extensive and varied functions. Here we compare genes encoding proteins that govern Ca(2+) entry and exit across cells or organelles within organisms of early eukaryotic evolution into fungi, plants, and animals. Recent phylogenomics analyses reveal a complex Ca(2+) signaling machinery in the apusozoan protist Thecamonas trahens, a putative unicellular progenitor of Opisthokonta. We compare T. trahens Ca(2+) signaling to that in a marine bikont protist, Aurantiochytrium limacinum, and demonstrate the conservation of key Ca(2+) signaling molecules in the basally diverging alga Cyanophora paradoxa. Particularly, our findings reveal the conservation of the CatSper channel complex in A. limacinum and C. paradoxa, suggesting that the CatSper complex likely originated from an ancestral Ca(2+) signaling machinery at the root of early eukaryotic evolution prior to the unikont/bikont split.
    Molecular Biology and Evolution 07/2014; DOI:10.1093/molbev/msu218 · 14.31 Impact Factor
  • Dipayan Chaudhuri, David E. Clapham
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent discovery of genes encoding the mitochondrial calcium (Ca2+) uniporter has revealed new opportunities for studying how abnormal Ca2+ signals cause disease. Ca2+ transport across the mitochondrial inner membrane is highly regulated, and the uniporter is the channel that acts as a major portal for Ca2+ influx. Low amounts of mitochondrial Ca2+ can boost ATP synthesis, but excess amounts, such as following cytoplasmic Ca2+ overload in heart failure, triggers mitochondrial failure and cell death. In fact, precisely because mitochondrial Ca2+ transport is so tightly regulated, a fundamental understanding of how the uniporter functions is necessary. Two key uniporter features allow Ca2+ influx without mitochondrial damage during normal physiology. First, the channel is significantly more selective than other known Ca2+ channels. This prevents the permeation of other ions and uncoupling of the electrochemical gradient. Second, the uniporter becomes active at only high Ca2+ concentrations, preventing a resting leak of cytoplasmic Ca2+ itself. Now possessing the identities of the various proteins forming the uniporter, we can proceed with efforts to define the molecular determinants of permeation, selectivity and Ca2+-regulation.
    Biochemical and Biophysical Research Communications 07/2014; 449(4). DOI:10.1016/j.bbrc.2014.04.141 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated sodium channels are important targets for the development of pharmaceutical drugs, because mutations in different human sodium channel isoforms have causal relationships with a range of neurological and cardiovascular diseases. In this study, functional electrophysiological studies show that the prokaryotic sodium channel from Magnetococcus marinus (NavMs) binds and is inhibited by eukaryotic sodium channel blockers in a manner similar to the human Na(v)1.1 channel, despite millions of years of divergent evolution between the two types of channels. Crystal complexes of the NavMs pore with several brominated blocker compounds depict a common antagonist binding site in the cavity, adjacent to lipid-facing fenestrations proposed to be the portals for drug entry. In silico docking studies indicate the full extent of the blocker binding site, and electrophysiology studies of NavMs channels with mutations at adjacent residues validate the location. These results suggest that the NavMs channel can be a valuable tool for screening and rational design of human drugs.
    Proceedings of the National Academy of Sciences 06/2014; 111(23). DOI:10.1073/pnas.1406855111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TRPM7 is a ubiquitous ion channel and kinase, a unique "chanzyme," required for proper early embryonic development. It conducts Zn(2+), Mg(2+), and Ca(2+) as well as monovalent cations and contains a functional serine/threonine kinase at its carboxyl terminus. Here, we show that in normal tissues and cell lines, the kinase is proteolytically cleaved from the channel domain in a cell-type-specific manner. These TRPM7 cleaved kinase fragments (M7CKs) translocate to the nucleus and bind multiple components of chromatin-remodeling complexes, including Polycomb group proteins. In the nucleus, the kinase phosphorylates specific serines/threonines of histones. M7CK-dependent phosphorylation of H3Ser10 at promoters of TRPM7-dependent genes correlates with their activity. We also demonstrate that cytosolic free [Zn(2+)] is TRPM7 dependent and regulates M7CK binding to transcription factors containing zinc-finger domains. These findings suggest that TRPM7-mediated modulation of intracellular Zn(2+) concentration couples ion-channel signaling to epigenetic chromatin covalent modifications that affect gene expression patterns. PAPERCLIP:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spermatozoa must leave one organism, navigate long distances, and deliver their paternal DNA into a mature egg. For successful navigation and delivery, a sperm-specific calcium channel is activated in the mammalian flagellum. The genes encoding this channel (CatSpers) appear first in ancient uniflagellates, suggesting that sperm use adaptive strategies developed long ago for single-cell navigation. Here, using genetics, super-resolution fluorescence microscopy, and phosphoproteomics, we investigate the CatSper-dependent mechanisms underlying this flagellar switch. We find that the CatSper channel is required for four linear calcium domains that organize signaling proteins along the flagella. This unique structure focuses tyrosine phosphorylation in time and space as sperm acquire the capacity to fertilize. In heterogeneous sperm populations, we find unique molecular phenotypes, but only sperm with intact CatSper domains that organize time-dependent and spatially specific protein tyrosine phosphorylation successfully migrate. These findings illuminate flagellar adaptation, signal transduction cascade organization, and fertility. PAPERFLICK:
    Cell 05/2014; 157(4):808-22. DOI:10.1016/j.cell.2014.02.056 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caspase-11 is a highly inducible caspase that controls both inflammatory responses and cell death. Caspase-11 controls interleukin 1β (IL-1β) secretion by potentiating caspase-1 activation and induces caspase-1-independent pyroptosis downstream of noncanonical NLRP3 inflammasome activators such as lipopolysaccharide (LPS) and Gram-negative bacteria. However, we still know very little about the downstream mechanism of caspase-11 in regulating inflammation because the known substrates of caspase-11 are only other caspases. Here, we identify the cationic channel subunit transient receptor potential channel 1 (TRPC1) as a substrate of caspase-11. TRPC1 deficiency increases the secretion of IL-1β without modulating caspase-1 cleavage or cell death in cultured macrophages. Consistently, trpc1(-/-) mice show higher IL-1β secretion in the sepsis model of intraperitoneal LPS injection. Altogether, our data suggest that caspase-11 modulates the cationic channel composition of the cell and thus regulates the unconventional secretion pathway in a manner independent of caspase-1.
    Cell Reports 03/2014; 6. DOI:10.1016/j.celrep.2014.02.015 · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral neuropathic pain, typified by the development of spontaneous pain or pain hypersensitivity following injury to the peripheral nervous system, is common, greatly impairs quality of life, and is inadequately treated with available drugs. Maladaptive changes in chloride homeostasis due to a decrease in the functional expression of the potassium-chloride cotransporter KCC2 in spinal cord dorsal horn neurons are a major contributor to the central disinhibition of γ-aminobutyric acid type A receptor- and glycine receptor-mediated signaling that characterizes neuropathic pain. A compelling novel analgesic strategy is to restore spinal ionotropic inhibition by enhancing KCC2-mediated chloride extrusion. We review the data on which this theory of alternative analgesia is based, discuss recent high-throughput screens that have searched for small-molecule activators of KCC2, and propose other strategies of KCC2 activation based on recent developments in the basic understanding of KCC2's functional regulation. Exploiting the chloride-dependent functional plasticity of the γ-aminobutyric acid and glycinergic system by targeting KCC2 may be a tenable method of restoring ionotropic inhibition not only in neuropathic pain but also in other "hyperexcitable" diseases of the nervous system such as seizures and spasticity.
    03/2014; 71(5). DOI:10.1001/jamaneurol.2014.21
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transient receptor potential (TRP) channels are abundant in the brain where they regulate transmission of sensory signals. The expression patterns of different TRPC subunits (TRPC1, 4, and 5) are consistent with their potential role in fear-related behaviors. Accordingly, we found recently that mutant mice lacking a specific TRP channel subunit, TRPC5, exhibited decreased innate fear responses. Both TRPC5 and another member of the same subfamily, TRPC4, form heteromeric complexes with the TRPC1 subunit (TRPC1/5 and TRPC1/4, respectively). As TRP channels with specific subunit compositions may have different functional properties, we hypothesized that fear-related behaviors could be differentially controlled by TRPCs with distinct subunit arrangements. In this study, we focused on the analysis of mutant mice lacking the TRPC4 subunit, which, as we confirmed in experiments on control mice, is expressed in brain areas implicated in the control of fear and anxiety. In behavioral experiments, we found that constitutive ablation of TRPC4 was associated with diminished anxiety levels (innate fear). Furthermore, knockdown of TRPC4 protein in the lateral amygdala via lentiviral-mediated gene delivery of RNAi mimicked the behavioral phenotype of constitutive TRPC4-null (TRPC4(-/-)) mouse. Recordings in brain slices demonstrated that these behavioral modifications could stem from the lack of TRPC4 potentiation in neurons in the lateral nucleus of the amygdala through two Gαq/11 protein-coupled signaling pathways, activated via Group I metabotropic glutamate receptors and cholecystokinin 2 receptors, respectively. Thus, TRPC4 and the structurally and functionally related subunit, TRPC5, may both contribute to the mechanisms underlying regulation of innate fear responses.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 03/2014; 34(10):3653-67. DOI:10.1523/JNEUROSCI.2274-13.2014 · 6.75 Impact Factor
  • Biophysical Journal 01/2014; 106(2):436a. DOI:10.1016/j.bpj.2013.11.2454 · 3.97 Impact Factor
  • Biophysical Journal 01/2014; 106(2):36a. DOI:10.1016/j.bpj.2013.11.273 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The leucine zipper, EF hand-containing transmembrane protein 1 (Letm1) gene encodes a mitochondrial inner membrane protein, whose depletion severely perturbs mitochondrial Ca(2+) and K(+) homeostasis. Here we expressed, purified, and reconstituted human Letm1 protein in liposomes. Using Ca(2+) fluorophore and (45)Ca(2+)-based assays, we demonstrate directly that Letm1 is a Ca(2+) transporter, with apparent affinities of cations in the sequence of Ca(2+) ≈ Mn(2+) > Gd(3+) ≈ La(3+) > Sr(2+) > Ba(2+), Mg(2+), K(+), Na(+). Kinetic analysis yields a Letm1 turnover rate of 2 Ca(2+)/s and a Km of ∼25 µM. Further experiments show that Letm1 mediates electroneutral 1 Ca(2+)/2 H(+) antiport. Letm1 is insensitive to ruthenium red, an inhibitor of the mitochondrial calcium uniporter, and CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger. Functional properties of Letm1 described here are remarkably similar to those of the H(+)-dependent Ca(2+) transport mechanism identified in intact mitochondria.
    The Journal of General Physiology 12/2013; 143(1). DOI:10.1085/jgp.201311096 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A primary cilium is a solitary, slender, non-motile protuberance of structured microtubules (9+0) enclosed by plasma membrane. Housing components of the cell division apparatus between cell divisions, primary cilia also serve as specialized compartments for calcium signalling and hedgehog signalling pathways. Specialized sensory cilia such as retinal photoreceptors and olfactory cilia use diverse ion channels. An ion current has been measured from primary cilia of kidney cells, but the responsible genes have not been identified. The polycystin proteins (PC and PKD), identified in linkage studies of polycystic kidney disease, are candidate channels divided into two structural classes: 11-transmembrane proteins (PKD1, PKD1L1 and PKD1L2) remarkable for a large extracellular amino terminus of putative cell adhesion domains and a G-protein-coupled receptor proteolytic site, and the 6-transmembrane channel proteins (PKD2, PKD2L1 and PKD2L2; TRPPs). Evidence indicates that the PKD1 proteins associate with the PKD2 proteins via coiled-coil domains. Here we use a transgenic mouse in which only cilia express a fluorophore and use it to record directly from primary cilia, and demonstrate that PKD1L1 and PKD2L1 form ion channels at high densities in several cell types. In conjunction with an accompanying manuscript, we show that the PKD1L1-PKD2L1 heteromeric channel establishes the cilia as a unique calcium compartment within cells that modulates established hedgehog pathways.
    Nature 12/2013; 504(7479):315-318. DOI:10.1038/nature12832 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary cilia are solitary, non-motile extensions of the centriole found on nearly all nucleated eukaryotic cells between cell divisions. Only ∼200-300 nm in diameter and a few micrometres long, they are separated from the cytoplasm by the ciliary neck and basal body. Often called sensory cilia, they are thought to receive chemical and mechanical stimuli and initiate specific cellular signal transduction pathways. When activated by a ligand, hedgehog pathway proteins, such as GLI2 and smoothened (SMO), translocate from the cell into the cilium. Mutations in primary ciliary proteins are associated with severe developmental defects. The ionic conditions, permeability of the primary cilia membrane, and effectiveness of the diffusion barriers between the cilia and cell body are unknown. Here we show that cilia are a unique calcium compartment regulated by a heteromeric TRP channel, PKD1L1-PKD2L1, in mice and humans. In contrast to the hypothesis that polycystin (PKD) channels initiate changes in ciliary calcium that are conducted into the cytoplasm, we show that changes in ciliary calcium concentration occur without substantially altering global cytoplasmic calcium. PKD1L1-PKD2L1 acts as a ciliary calcium channel controlling ciliary calcium concentration and thereby modifying SMO-activated GLI2 translocation and GLI1 expression.
    Nature 12/2013; 504(7479):311-314. DOI:10.1038/nature12833 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, calcium influx is required for oocyte maturation and egg activation. The molecular identities of the calcium-permeant channels that underlie the initiation of embryonic development are not established. Here, we describe a transient receptor potential (TRP) ion channel current activated by TRP agonists that is absent in TrpV3(-/-) eggs. TRPV3 current is differentially expressed during oocyte maturation, reaching a peak of maximum density and activity at metaphase of meiosis II (MII), the stage of fertilization. Selective activation of TRPV3 channels provokes egg activation by mediating massive calcium entry. Widely used to activate eggs, strontium application is known to yield normal offspring in combination with somatic cell nuclear transfer. We show that TRPV3 is required for strontium influx, because TrpV3(-/-) eggs failed to conduct Sr(2+) or undergo strontium-induced activation. We propose that TRPV3 is a major mediator of calcium influx in mouse eggs and is a putative target for artificial egg activation.
    Cell Reports 12/2013; DOI:10.1016/j.celrep.2013.11.007 · 7.21 Impact Factor
  • Source
    David E Clapham
    [Show abstract] [Hide abstract]
    ABSTRACT: Massive endocytosis is initiated by a series of steps that involve a sudden influx of calcium ions, changes in mitochondria, and modification of surface proteins by lipids. A better understanding of this process could lead to new approaches to reducing the tissue damage that is caused by heart attacks.
    eLife Sciences 11/2013; 2. DOI:10.7554/eLife.01738 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondrial uniporter is a highly selective calcium channel in the organelle's inner membrane. Its molecular components include the EF-hand-containing proteins mitochondrial calcium uptake 1 (MICU1) and MICU2 and the pore-forming subunit mitochondrial calcium uniporter (MCU). We sought to achieve a full molecular characterization of the uniporter holocomplex (uniplex). Quantitative mass spectrometry of affinity-purified uniplex recovered MICU1 and MICU2, MCU and its paralog MCUb, and essential MCU regulator (EMRE), a previously uncharacterized protein. EMRE is a 10-kD, metazoan-specific protein with a single transmembrane domain. In its absence, uniporter channel activity was lost despite intact MCU expression and oligomerization. EMRE was required for the interaction of MCU with MICU1 and MICU2. Hence, EMRE is essential for in vivo uniporter current and additionally bridges the calcium-sensing role of MICU1 and MICU2 with the calcium-conducting role of MCU.
    Science 11/2013; 342. DOI:10.1126/science.1242993 · 31.48 Impact Factor

Publication Stats

28k Citations
3,698.34 Total Impact Points


  • 1999–2015
    • Boston Children's Hospital
      • Manton Center of Orphan Disease Research
      Boston, Massachusetts, United States
  • 1998–2014
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1997–2014
    • Harvard Medical School
      • • Department of Cell Biology
      • • Department of Neurobiology
      Boston, Massachusetts, United States
    • University of California, Davis
      • Area of Chemical Biology
      Davis, California, United States
  • 1987–2014
    • Harvard University
      • Department of Chemistry and Chemical Biology
      Cambridge, Massachusetts, United States
  • 2012
    • University of California, San Francisco
      San Francisco, California, United States
  • 2001
    • University of Texas Southwestern Medical Center
      Dallas, Texas, United States
  • 1996
    • Kansas City VA Medical Center
      Kansas City, Missouri, United States
  • 1993–1996
    • Mayo Clinic - Rochester
      Рочестер, Minnesota, United States
    • Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center
      Torrance, California, United States
  • 1988
    • Brigham and Women's Hospital
      • Department of Medicine
      Boston, MA, United States