David T Curiel

Washington University in St. Louis, San Luis, Missouri, United States

Are you David T Curiel?

Claim your profile

Publications (725)3899.54 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene-based therapies for neurological diseases continue to develop briskly. As disease mechanisms are elucidated, flexible gene delivery platforms incorporating transcriptional regulatory elements, therapeutic genes and targeted delivery are required for the safety and efficacy of these approaches. Adenovirus serotype 5 (Ad5)-based vectors can carry large genetic payloads to provide this flexibility, but do not transduce neuronal cells efficiently. To address this, we have developed a tropism-modified Ad5 vector with neuron-selective targeting properties for evaluation in models of Parkinson disease therapy. A panel of tropism-modified Ad5 vectors was screened for enhanced gene delivery in a neuroblastoma cell line model system. We used these observations to design and construct an unbiased Ad vector platform, consisting of an unmodified Ad5 and a tropism-modified Ad5 vector containing the fiber knob domain from canine Ad serotype 2 (Ad5-CGW-CK2). Delivery to the substantia nigra or striatum showed that this vector produced a neuronally-restricted pattern of gene expression. Many of the transduced neurons were from regions with afferent projections to the injection site, implicating that OPEN ACCESS Viruses 2014, 6 3294 the vector binds the presynaptic terminal resulting in presynaptic transduction. We show that Ad5-CGW-CK2 can selectively transduce neurons in the brain and hypothesize that this modular platform is potentially adaptable to clinical use.
    Viruses 08/2014; 6(8):3293-3310. · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We used stable isotope labelling of amino acids in cell culture and high throughput quantitative mass spectrometry to analyse the protein composition of highly purified wild type adenoviruses, mutant adenoviruses lacking an internal protein component (protein V) and recombinant adenoviruses of the type commonly used in gene therapy including one virus which had been used in a clinical trail. We found that the viral protein abundance and composition was consistent across all types of virus examined except for the virus lacking protein V which also had reduced amounts of another viral core protein, protein VII. In all the samples analysed we found no evidence of consistent packaging or contamination with cellular proteins. We believe this technique makes a powerful method to analyse the protein composition of this important gene therapy vector and genetically engineered or synthetic virus like particles. The raw data have been deposited at ProteomeXchange, identifier PXD001120.
    Journal of General Virology 08/2014; · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using adenovirus (Ad)-based vectors is a promising strategy for novel cancer treatments; however, current tracking approaches in vivo are limited. The C-terminus of the Ad minor capsid protein IX (pIX) can incorporate heterologous reporters to monitor biodistribution. We incorporated metallothionein (MT), a low-molecular-weight metal-binding protein, as a fusion to pIX. We previously demonstrated 99mTc binding in vitro to a pIX-MT fusion on the Ad capsid. We investigated different fusions of MT within pIX to optimize functional display. We identified a dimeric MT construct fused to pIX that showed significantly increased radiolabeling capacity. After Ad radiolabeling, we characterized metal binding in vitro. We explored biodistribution in vivo in control mice, mice pretreated with warfarin, mice preimmunized with wild-type Ad, and mice that received both warfarin pretreatment and Ad preimmunization. Localization of activity to liver and bladder was seen, with activity detected in spleen, intestine, and kidneys. Afterwards, the mice were euthanized and selected organs were dissected for further analysis. Similar to the imaging results, most of the radioactivity was found in the liver, spleen, kidneys, and bladder, with significant differences between the groups observed in the liver. These results demonstrate this platform application for following Ad dissemination in vivo.
    Molecular imaging. 07/2014; 13:1-12.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.Laboratory Investigation advance online publication, 23 June 2014; doi:10.1038/labinvest.2014.78.
    06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unique ability of human adenovirus serotype 5 (Ad5) to accomplish efficient transduction has allowed the use of Ad5-based vectors for a range of gene therapy applications. Several strategies have been developed to alter tropism of Ad vectors to achieve a cell-specific gene delivery by using fiber modifications via genetic incorporation of targeting motifs. In this study, we have explored the utility of novel anti-human carcinoembryonic antigen (hCEA) single variable domains derived from heavy chain (VHH) camelid family of antibodies to achieve targeted gene transfer. To obtain anti-CEA VHHs, we produced a VHH-display library from peripheral blood lymphocytes RNA of alpacas at the peak of immune response to the hCEA antigen (Ag). We genetically incorporated an anti-hCEA VHH into a de-knobbed Ad5 fiber-fibritin chimera and demonstrated selective targeting to the cognate epitope expressed on the membrane surface of target cells. We report that the anti-hCEA VHH used in this study retains Ag recognition functionality and provides specificity for gene transfer of capsid-modified Ad5 vectors. These studies clearly demonstrated the feasibility of retargeting of Ad5-based gene transfer using VHHs.Laboratory Investigation advance online publication, 16 June 2014; doi:10.1038/labinvest.2014.82.
    06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is a significant clinical problem and novel therapeutic approaches are desperately needed. Recent advances in conditionally replicative adenovirus-based (CRAd) oncolytic virus design allow the application of CRAd vectors as a therapeutic strategy to efficiently target and eradicate chemoresistant pancreatic cancer cells, thereby improving the efficacy of pancreatic cancer treatment. The goal of this study was to construct and validate the efficacy of an infectivity-enhanced, liver-untargeted, tumor-specific CRAd vector. A panel of CRAds has been derived that embodies the C-X-C chemokine receptor type 4 promoter for conditional replication, two-fiber complex mosaicism for targeting expansion and hexon hypervariable region 7 (HVR7) modification for liver untargeting. We evaluated CRAds for cancer virotherapy using a human pancreatic tumor xenograft model. Employment of the fiber mosaic approach improved CRAd replication in pancreatic tumor xenografts. Substitution of the HVR7 of the Ad5 hexon for Ad serotype 3 hexon resulted in decreased liver tropism of systemically administrated CRAd. Obtained data demonstrated that employment of complex mosaicism increased efficacy of the combination of oncolytic virotherapy with chemotherapy in a human pancreatic tumor xenograft model.Cancer Gene Therapy advance online publication, 6 June 2014; doi:10.1038/cgt.2014.26.
    Cancer gene therapy. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) displays potent growth suppressing and cell killing activity against a wide variety of human and rodent cancer cells. In this study, we identified a canine ortholog of the human mda-7/IL-24 gene located within a cluster of IL-10 family members on chromosome 7. The full-length mRNA sequence of canine mda-7 was determined, which encodes a 186-amino acid protein that has 66% similarity to human MDA-7/IL-24. Canine MDA-7 is constitutively expressed in cultured normal canine epidermal keratinocytes (NCEKs), and its expression levels are increased after lipopolysaccharide stimulation. In cultured NCEKs, the canine mda-7 pre-mRNA is differentially spliced, via exon skipping and alternate 5'-splice donor sites, to yield five splice variants (canine mda-7sv1, canine mda-7sv2, canine mda-7sv3, canine mda-7sv4 and canine mda-7sv5) that encode four protein isoforms of the canine MDA-7 protein. These protein isoforms have a conserved N-terminus (signal peptide sequence) and are dissimilar in amino acid sequences at their C-terminus. Canine MDA-7 is not expressed in primary canine tumor samples, and most tumor derived cancer cell lines tested, like its human counterpart. Unlike human MDA-7/IL-24, canine mda-7 mRNA is not expressed in unstimulated or lipopolysaccharide (LPS), concanavalin A (ConA) or phytohemagglutinin (PHA) stimulated canine peripheral blood mononuclear cells (PBMCs). Furthermore, in-silico analysis revealed that canonical canine MDA-7 has a potential 28 amino acid signal peptide sequence that can target it for active secretion. This data suggests that canine mda-7 is indeed an ortholog of human mda-7/IL-24, its protein product has high amino acid similarity to human MDA-7/IL-24 protein and it may possess similar biological properties to human MDA-7/IL-24, but its expression pattern is more restricted than its human ortholog.
    Gene 05/2014; · 2.20 Impact Factor
  • Source
    Junji Uchino, David T Curiel, Hideyo Ugai
    [Show abstract] [Hide abstract]
    ABSTRACT: Species C human adenovirus serotype 5 (HAdV-C5) is widely used as a vector for cancer gene therapy, because it efficiently transduces target cells. A variety of HAdV-C5 vectors have been developed and tested in vitro and in vivo for cancer gene therapy. While clinical trials with HAdV-C5 vectors resulted in effective responses in many cancer patients, administration of HAdV-C5 vectors to solid tumors showed responses in a limited area. A biological barrier in tumor mass is considered to hinder viral spread of HAdV-C5 vectors from infected cells. Therefore, efficient virus-spread from an infected tumor cell to surrounding tumor cells is required for successful cancer gene therapy. In this study, we compared HAdV-C5 to sixteen other HAdV serotypes selected from species A to G for virus-spread ability in vitro. HAdV-D9 showed better virus-spread ability than other serotypes, and its viral progeny were efficiently released from infected cells during viral replication. Although the HAdV-D9 fiber protein contains a binding site for coxsackie B virus and adenovirus receptor (CAR), HAdV-D9 showed expanded tropism for infection due to human CAR (hCAR)-independent attachment to target cells. HAdV-D9 infection effectively killed hCAR-negative cancer cells as well as hCAR-positive cancer cells. These results suggest that HADV-D9, with its better virus-spread ability, could have improved therapeutic efficacy in solid tumors compared to HAdV-C5.
    PLoS ONE 01/2014; 9(2):e87342. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adenovirus serotype 5 (Ad5) vectors are well suited for gene therapy. However, tissue-selective transduction by systemically administered Ad5-based vectors is confounded by viral particle sequestration in the liver. Hexon-modified Ad5 expressing reporter gene under transcriptional control by the immediate/early cytomegalovirus (CMV) or the Roundabout 4 receptor (Robo4) enhancer/promoter was characterized by growth in cell culture, stability in vitro, gene transfer in the presence of human coagulation factor X, and biodistribution in mice. The obtained data demonstrate the utility of the Robo4 promoter in an Ad5 vector context. Substitution of the hypervariable region 7 (HVR7) of the Ad5 hexon with HVR7 from Ad serotype 3 resulted in decreased liver tropism and dramatically altered biodistribution of gene expression. The results of these studies suggest that the combination of liver detargeting using a genetic modification of hexon with an endothelium-specific transcriptional control element produces an additive effect in the improvement of Ad5 biodistribution.
    Virology 12/2013; 447(1-2):312-25. · 3.35 Impact Factor
  • Source
    M S Beatty, D T Curiel
    [Show abstract] [Hide abstract]
    ABSTRACT: Adenoviruses are currently used in a variety of bench and bedside applications. However, their employment in gene delivery to lymphocyte lineages is hampered by the lack of coxsackie virus and adenovirus receptor (CAR) on the cell surface. Exploitation of an alternative receptor on the surface of T lymphocytes can allow for utilization of adenovirus in a variety of T lymphocyte-based diseases and therapies. Here, we describe how resistance to infection can be overcome by the utilization of a bi-specific fusion protein, soluble CAR murine interleukin 2 (sCAR-mIL-2), that retargets adenovirus to the murine IL-2 receptor (IL-2R). Infection of a murine T-cell line, CTLL-2, with a sCAR-mIL-2/Adenovirus conjugate provided a ninefold increase in both green fluorescence protein-positive cells and luciferase expression. In addition, this increase in infection was also seen in isolated primary murine T lymphocytes. In this context, the sCAR-mIL-2 adapter provided a fourfold gene transduction increase in activated primary murine T lymphocytes. Our results show that recombinant sCAR-mIL-2 fusion protein promotes IL-2R-targeted gene transfer to murine T lymphocytes and that alternative targeting can abrogate their native resistance to infection.Cancer Gene Therapy advance online publication, 9 August 2013; doi:10.1038/cgt.2013.39.
    Cancer gene therapy 08/2013; · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Postoperative abdominal/pelvic peritoneal adhesions are a major source of morbidity (bowel obstruction, infertility, ectopic gestation as well as chronic pelvic pain) in women. In this study, we screened various transduction and transcription modifications of adenovirus (Ad) to identify those that support maximal Ad-mediated gene delivery to human adhesion fibroblasts, which in turn would enhance the efficacy of this novel treatment/preventative strategy for postoperative adhesions. We transduced primary cultures of human peritoneal adhesion fibroblasts with fiber-modified Ad vectors Ad5-RGD-luc, Ad5-Sigma-luc, Ad5/3-luc and Ad5-CAV2-luc as well as transcriptional targeting viruses Ad5-survivin-luc, Ad5-heparanase-luc, Ad5-mesothelin (MSLN)-CRAd-luc and Ad5-secretory leukoprotease inhibitor (SLPI)-luc, and compared their activity to wild-type Ad5-luc. At 48 h, luciferase activity was measured and normalized to the total protein content in the cells. Among the fiber-modified Ad vectors, Ad5-Sigma-luc and among the transcriptional targeting modified Ad vectors, Ad5-MSLN-CRAd-luc showed significantly increased expression levels of luciferase activity at 5, 10 and 50 plaque forming units/cell in adhesion fibroblast cells compared with wild-type Ad5-luc (p < 0.05). Specific modifications of Ad improve their gene delivery efficiency towards human peritoneal adhesion fibroblasts. Developing a safe localized method to prevent/treat postoperative adhesion formation would have a major impact on women health.
    Gynecologic and Obstetric Investigation 08/2013; · 1.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Few options are available for treating patients with advanced prostate cancer (PC). As PC is a slow growing disease and accessible by ultrasound, gene therapy could provide a viable option for this neoplasm. Conditionally replication-competent adenoviruses (CRCAs) represent potentially useful reagents for treating prostate cancer (PC). We previously constructed a CRCA, Cancer Terminator Virus (CTV), which showed efficacy both in vitro and in vivo for PC. The CTV was generated on a serotype 5-background (Ad.5-CTV) with infectivity depending on Coxsackie-Adenovirus Receptors (CARs). CARs are frequently reduced in many tumor types, including PCs thereby limiting effective Ad-mediated therapy. Using serotype chimerism, a novel CTV (Ad.5/3-CTV) was created by replacing the Ad.5 fiber knob with the Ad.3 fiber knob thereby facilitating infection in a CAR-independent manner. We evaluated Ad.5/3-CTV in comparison with Ad.5-CTV in low CAR human PC cells, demonstrating higher efficiency in inhibiting cell viability in vitro. Moreover, Ad.5/3-CTV potently suppressed in vivo tumor growth in a nude mouse xenograft model and in a spontaneously induced PC that develops in Hi-myc transgenic mice. Considering the significant responses in a Phase I clinical trial of a non-replicating Ad.5-mda-7 in advanced cancers, Ad.5/3-CTV may exert improved therapeutic benefit in a clinical setting. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 07/2013; · 4.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Is targeted adenovirus vector, Ad-SSTR-RGD-TK (Adenovirus -human somatostatin receptor subtype 2- arginine, glycine and aspartate-thymidine kinase), given in combination with ganciclovir (GCV) against immortalized human leiomyoma cells (HuLM) a potential therapy for uterine fibroids? Ad-SSTR-RGD-TK/GCV, a targeted adenovirus, effectively reduces cell growth in HuLM cells and to a significantly greater extent than in human uterine smooth muscle cells (UtSM). Uterine fibroids (leiomyomas), a major cause of morbidity and the most common indication for hysterectomy in premenopausal women, are well-defined tumors, making gene therapy a suitable and potentially effective non-surgical approach for treatment. Transduction of uterine fibroid cells with adenoviral vectors such as Ad-TK/GCV (herpes simplex virus thymidine kinase gene) decreases cell proliferation. An in vitro cell culture method was set up to compare and test the efficacy of a modified adenovirus vector with different multiplicities of infection in two human immortalized cell lines for 5 days. Immortalized human leiomyoma cells and human uterine smooth muscle cells were infected with different multiplicities of infection (MOI) (5-100 plaque-forming units (pfu)/cell) of a modified Ad-SSTR-RGD-TK vector and subsequently treated with GCV. For comparison, HuLM and UtSM cells were transfected with Ad-TK/GCV and Ad-LacZ/GCV. Cell proliferation was measured using the CyQuant assay in both cell types. Additionally, western blotting was used to assess the expression of proteins responsible for regulating proliferation and apoptosis in the cells. Transduction of HuLM cells with Ad-SSTR-RGD-TK/GCV at 5, 10, 50 and 100 pfu/cell decreased cell proliferation by 28, 33, 45, and 84%, respectively (P < 0.05) compared with untransfected cells, whereas cell proliferation in UtSM cells transfected with the same four MOIs of Ad-SSTR-RGD-TK/GCV compared with that of untransfected cells was decreased only by 8, 23, 25, and 28%, respectively (P < 0.01). Western blot analysis showed that, in comparison with the untargeted vector Ad-TK, Ad-SSTR-RGD-TK/GCV more effectively reduced expression of proteins that regulate the cell cycle (Cyclin D1) and proliferation (PCNA, Proliferating Cell Nuclear Antigen), and it induced expression of the apoptotic protein BAX, in HuLM cells. Results from this study need to be replicated in an appropriate animal model before testing this adenoviral vector in a human trial. Effective targeting of gene therapy to leiomyoma cells enhances its potential as a non-invasive treatment of uterine fibroids. This work was supported by a grant from the National Institute of Child Health and Human Development, National Institutes of Health [R01 HD046228]. None of the authors has any conflict of interest to declare.
    Human Reproduction 07/2013; · 4.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: The conditionally replicative adenovirus Ad5/3-Δ24 has a type-3 knob incorporated into the type-5 fiber that facilitates enhanced ovarian cancer infectivity. Preclinical studies have shown that Ad5/3-Δ24 achieves significant oncolysis and anti-tumor activity in ovarian cancer models. The purpose of this study was to evaluate in a Phase I trial the feasibility and safety of intraperitoneal (IP) Ad5/3-Δ24 in recurrent ovarian cancer patients. METHODS: Eligible patients were treated with IP Ad5/3-Δ24 for 3 consecutive days in one of three dose cohorts ranging 1 x 10(10)-1 x 10(12) vp. Toxicity was assessed utilizing CTC grading and efficacy with RECIST. Ascites, serum, and other samples were obtained to evaluate gene transfer, generation of wildtype virus, viral shedding, and antibody response. RESULTS: Nine of 10 patients completed treatment per protocol. A total of 15 vector-related adverse events were experienced in 5 patients. These events included fever or chills, nausea, fatigue, and myalgia. All were grade 1-2 in nature, transient, and medically managed. Of the 8 treated patients evaluable for response, six patients had stable disease and 2 patients had progressive disease. Three patients had decreased CA-125 from pretreatment levels one month after treatment. Ancillary biologic studies indicated Ad5/3-Δ24 replication in patients in the higher dose cohorts. All patients experienced an anti-adenoviral neutralizing antibody effect. CONCLUSIONS: This study suggests the feasibility and safety of a serotype chimeric infectivity-enhanced CRAd, Ad5/3-Δ24, as a potential therapeutic option for recurrent ovarian cancer patients.
    Gynecologic Oncology 06/2013; · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously designed a conditionally replicative oncolytic adenovirus (CRAd) named Ad-F512 that can target both the stromal and the malignant melanoma cell compartments. The replication capacity of this CRAd is driven by a 0.5 Kb SPARC promoter fragment (named F512). To improve CRA\[dacute]s efficacy we cloned into F512, motives responsive to hypoxia (HRE) and inflammation (NF-κB) to obtain a chimeric promoter named κBF512HRE. Using luciferase as a reporter gene we observed 10-15 fold increased activity under hypoxia and 10-80-fold induction upon TNF-α addition. We next constructed a CRAd (Ad-κBF512HRE) where E1A activity was under κBF512HRE regulation. Treatment of nude mice harboring established tumors made of a mix of SB2 melanoma cells and WI-38 fibroblasts with Ad-κBF512HRE led to the complete elimination of tumors in 100% of mice (8/8). Moreover, Ad-5/3-κBF512HRE, a viral variant pseudotyped with a chimeric 5/3 fiber exerted a strong lytic effect on CAR-negative melanoma cells and was highly effective in vivo on established tumors made of melanoma cells and WI-38 fibroblasts leading to the complete elimination of 4/5 tumors. These results indicate that this improved stroma-targeted oncolytic adenovirus can override the resistance of melanoma tumors and might become of significant importance for melanoma therapeutics.Journal of Investigative Dermatology accepted article preview online, 19 April 2013; doi:10.1038/jid.2013.191.
    Journal of Investigative Dermatology 04/2013; · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is a highly fatal disease mandating development of novel, targeted therapies to elicit prolonged survival benefit to the patients. Insulin-like growth factor-binding protein-7 (IGFBP7), a secreted protein belonging to the IGFBP family, functions as a potential tumor suppressor for HCC. In the present study, we evaluated the therapeutic efficacy of a replication-incompetent adenovirus expressing IGFBP7 (Ad.IGFBP7) in human HCC. Ad.IGFBP7 profoundly inhibited viability and induced apoptosis in multiple human HCC cell lines by inducing reactive oxygen species (ROS) and activating a DNA damage response (DDR) and p38 MAPK. In orthotopic xenograft models of human HCC in athymic nude mice, intravenous administration of Ad.IGFBP7 profoundly inhibited primary tumor growth and intrahepatic metastasis. In a nude mice subcutaneous model, xenografts from human HCC cells were established in both flanks and only left-sided tumors received intratumoral injection of Ad.IGFBP7. Growth of both left-sided injected tumors and right-sided uninjected tumors were markedly inhibited by Ad.IGFBP7 with profound suppression of angiogenesis. These findings indicate that Ad.IGFBP7 might be a potent therapeutic eradicating both primary HCC and distant metastasis and might be an effective treatment option for terminal HCC patients.Molecular Therapy (2013); doi:10.1038/mt.2012.282.
    Molecular Therapy 01/2013; · 7.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CONTRIBUTING REVIEWERS: The editors of Journal of Ovarian Research would like to thank all of our reviewers who have contributed to the journal in volume 5 (2012).
    Journal of Ovarian Research 01/2013; 6(1):16. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vectors based on human adenovirus serotype 5 (HAdV-5) continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting. As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4). This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells. These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers.
    PLoS ONE 01/2013; 8(2):e55533. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New approaches targeting metastatic neovasculature are needed. Payload capacity, cellular transduction efficiency, and first-pass cellular uptake following systemic vector administration, motivates persistent interest in tumor vascular endothelial cell (EC) adenoviral (Ad) vector targeting. While EC transductional and transcriptional targeting has been accomplished, vector administration approaches of limited clinical utility, lack of tumor-wide EC expression quantification, and failure to address avid liver sequestration, challenged prior work. Here, we intravenously injected an Ad vector containing 3 kb of the human roundabout4 (ROBO4) enhancer/promoter transcriptionally regulating an enhanced green fluorescent protein (EGFP) reporter into immunodeficient mice bearing 786-O renal cell carcinoma subcutaneous (SC) xenografts and kidney orthotopic (KO) tumors. Initial experiments performed in human coxsackie virus and adenovirus receptor (hCAR) transgenic:Rag2 knockout mice revealed multiple ECs with high-level Ad5ROBO4-EGFP expression throughout KO and SC tumors. In contrast, Ad5CMV-EGFP was sporadically expressed in a few tumor vascular ECs and stromal cells. As the hCAR transgene also facilitated Ad5ROBO4 and control Ad5CMV vector EC expression in multiple host organs, follow-on experiments engaged warfarin-mediated liver vector detargeting in hCAR non-transgenic mice. Ad5ROBO4-mediated EC expression was undetectable in most host organs, while the frequencies of vector expressing intratumoral vessels and whole tumor EGFP protein levels remained elevated. In contrast, AdCMV vector expression was only detectable in one or two stromal cells throughout the whole tumor. The Ad5ROBO4 vector, in conjunction with liver detargeting, provides tractable genetic access for in-vivo EC genetic engineering in malignancies.
    PLoS ONE 01/2013; 8(12):e83933. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific and efficient gene delivery to the lung has been hampered by liver sequestration of adenovirus serotype 5 (Ad5) vectors. The complexity of Ad5 liver tropism has largely been unraveled, permitting improved efficacy of Ad5 gene delivery. However, Kupffer cell (KC) scavenging and elimination of Ad5 still represent major obstacles to lung gene delivery strategies. KC uptake substantially reduces bioavailability of Ad5 for target tissues and compensatory dose escalation leads to acute hepatotoxicity and a potent innate immune response. Here, we report a novel lung-targeting strategy through redirection of Ad5 binding to the concentrated leukocyte pool within the pulmonary microvasculature. We demonstrate that this leukocyte-binding approach retargets Ad5 specifically to lung endothelial cells and prevents KC uptake and hepatocyte transduction, resulting in 165 000-fold enhanced lung targeting, compared with Ad5. In addition, myeloid cell-specific binding is preserved in single-cell lung suspensions and only Ad.MBP-coated myeloid cells achieved efficient endothelial cell transduction ex vivo. These findings demonstrate that KC sequestration of Ad5 can be prevented through more efficient uptake of virions in target tissues and suggest that endothelial transduction is achieved by leukocyte-mediated 'hand-off' of Ad.Gene Therapy advance online publication, 22 November 2012; doi:10.1038/gt.2012.91.
    Gene therapy 11/2012; · 4.75 Impact Factor

Publication Stats

20k Citations
3,899.54 Total Impact Points

Institutions

  • 2011–2014
    • Washington University in St. Louis
      • • Department of Radiation Oncology
      • • Division of Cancer Biology
      San Luis, Missouri, United States
  • 2013
    • Meharry Medical College
      • Department of Obstetrics and Gynecology
      Nashville, TN, United States
    • University of Louisville
      • Department of Physiology and Biophysics
      Louisville, KY, United States
  • 1994–2013
    • University of Alabama at Birmingham
      • • Department of Medicine
      • • Department of Obstetrics and Gynecology
      • • Division of Gynecologic Oncology
      • • Department of Pathology
      Birmingham, Alabama, United States
  • 2012
    • Louisiana State University Health Sciences Center Shreveport
      • Division of Surgical Oncology
      Shreveport, Louisiana, United States
  • 2002–2012
    • VU University Medical Center
      • Department of Pathology
      Amsterdamo, North Holland, Netherlands
    • Netherlands Cancer Institute
      • Department of Urology
      Amsterdamo, North Holland, Netherlands
    • University of Amsterdam
      • Faculty of Medicine AMC
      Amsterdam, North Holland, Netherlands
  • 2007–2011
    • Auburn University
      • • College of Veterinary Medicine
      • • Department of Pathobiology
      Auburn, AL, United States
    • Royal Adelaide Hospital
      • Department of Thoracic Medicine
      Tarndarnya, South Australia, Australia
    • Southern Research Institute
      Birmingham, Alabama, United States
    • University of Mississippi Medical Center
      • Department of Pathology
      Jackson, MS, United States
  • 2006–2011
    • Louisiana State University Health Sciences Center New Orleans
      • • Department of Surgery
      • • Department of Cell Biology & Anatomy
      New Orleans, Louisiana, United States
    • Seoul National University Hospital
      • Department of Internal Medicine
      Seoul, Seoul, South Korea
    • Universitätsklinikum Düsseldorf
      Düsseldorf, North Rhine-Westphalia, Germany
  • 2004–2011
    • Virginia Commonwealth University
      • • School of Medicine
      • • Department of Biochemistry and Molecular Biology
      • • Department of Radiation Oncology
      Richmond, VA, United States
    • Vanderbilt University
      • Vanderbilt-Ingram Cancer Center (VICC)
      Nashville, MI, United States
    • Roche Institute of Molecular Biology
      Nutley, New Jersey, United States
  • 1999–2011
    • VU University Amsterdam
      • • Department of Medical Oncology
      • • Department of Neurosurgery
      • • Department of Gastroenterology and Hepatology
      Amsterdam, North Holland, Netherlands
  • 2009
    • Mount Sinai School of Medicine
      • Department of Neurosurgery
      Manhattan, New York, United States
    • University of Minnesota Twin Cities
      • Department of Surgery
      Minneapolis, MN, United States
  • 2007–2009
    • University of California, Los Angeles
      • • Molecular Biology Institute
      • • Department of Biological Chemistry
      Los Angeles, CA, United States
  • 2005–2009
    • Kyushu University
      • Research Institute for Diseases of the Chest
      Fukuoka-shi, Fukuoka-ken, Japan
    • Istanbul University
      • Department of General Surgery
      İstanbul, Istanbul, Turkey
    • Heinrich-Heine-Universität Düsseldorf
      • Frauenklinik
      Düsseldorf, North Rhine-Westphalia, Germany
  • 2008
    • University of Texas Medical Branch at Galveston
      • Department of Obstetrics and Gynecology
      Galveston, TX, United States
    • Universitätsklinikum Erlangen
      • Department of Dermatology
      Erlangen, Bavaria, Germany
  • 2007–2008
    • Columbia University
      • Department of Urology
      New York City, NY, United States
  • 2004–2008
    • Hebrew University of Jerusalem
      • • Faculty of Medicine
      • • Department of Nephrology
      Jerusalem, Jerusalem District, Israel
  • 2006–2007
    • Osaka University
      • Graduate School of Frontier Biosciences
      Ōsaka-shi, Osaka-fu, Japan
    • University of Chicago
      • Pritzker School of Medicine
      Chicago, IL, United States
  • 2004–2005
    • University of Helsinki
      Helsinki, Southern Finland Province, Finland
  • 2003
    • University of Kuopio
      Kuopio, Eastern Finland Province, Finland
  • 2001
    • University of Illinois at Chicago
      Chicago, Illinois, United States
  • 1995–2001
    • University of Alabama
      Tuscaloosa, Alabama, United States
  • 1998
    • University of Colorado
      • Division of Infectious Diseases
      Denver, CO, United States
    • Minneapolis Veterans Affairs Hospital
      Minneapolis, Minnesota, United States
  • 1991–1994
    • University of North Carolina at Chapel Hill
      • • Department of Medicine
      • • Department of Biochemistry and Biophysics
      North Carolina, United States
  • 1992
    • Research Institute of Molecular Pathology
      Wien, Vienna, Austria