D Lu

University of Florida, Gainesville, FL, United States

Are you D Lu?

Claim your profile

Publications (32)190.47 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In spite of excellent drugs that are available for the control of hypertension, the pharmacological approach has major disadvantages including compliance, side effects, and inability to cure the disease. In the present chapter we provide evidence that a gene therapy concept based on the inhibition of the RAS at a genetic level, with the use of an antisense to the AT1R, is an exciting and viable approach for long-term control of hypertension without the disadvantages inherent in pharmaceutical therapy. A retrovirus-based vector has been used to deliver AT1R-AS in Ang II target tissues both in vitro and in vivo. The transduction efficiency is high and leads to the attenuation of Ang II action in vitro and prevention of hypertension in the SH rat, a model for primary human hypertension. These studies have unveiled a new avenue in which a similar approach could be attempted in the reversal of hypertension in adult animals.
    Methods in Enzymology 02/2000; 314:581-90. · 2.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies have demonstrated that the introduction of angiotensin II type I receptor antisense (AT(1)R-AS) cDNA by a retrovirally mediated delivery system prevents the development of hypertension in the spontaneously hypertensive rat (SHR), an animal model for primary hypertension in humans. These results have led us to propose the hypothesis that an interruption of the renin-angiotensin system (RAS) activity at a genetic level would prevent hypertension on a permanent basis. F(1) and F(2) generations of offspring from a retroviral vector, LNSV- and LNSV-AT(1)R-AS-treated SHR, were generated, and various physiological parameters indicative of hypertension were studied and compared with those of their parents to investigate this hypothesis. Both F(1) and F(2) generations of LNSV-AT(1)R-AS-treated SHR expressed a persistently lower blood pressure, decreased cardiac hypertrophy and fibrosis, decreased medial thickness, and normalization of renal artery excitation-contraction coupling, Ca(2+) current, and [Ca(2+)](i) when compared with offspring derived from the LNSV-treated SHR. In fact, the magnitude of the prevention of these pathophysiological alterations was similar to that observed in the LNSV-AT(1)R-AS-treated SHR parent. The prevention of cardiovascular pathophysiology and expression of normotensive phenotypes are, at least in part, a result of integration and subsequent transmission of AT(1)R-AS from the SHR parents to offspring. These data demonstrate that a single intracardiac injection of LNSV-AT(1)R-AS causes a permanent cardiovascular protection against hypertension as a result of a genomic integration and germ line transmission of the AT(1)R-AS in the SHR offspring.
    Circulation Research 12/1999; 85(10):e44-50. · 11.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (Ang II) exerts chronic stimulatory actions on tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), and the norepinephrine transporter (NET), in part, by influencing the transcription of their genes. These neuromodulatory actions of Ang II involve Ras-Raf-MAP kinase signal transduction pathways (Lu, D., H. Yang, and M.K. Raizada. 1997. J. Cell Biol. 135:1609-1617). In this study, we present evidence to demonstrate participation of another signaling pathway in these neuronal actions of Ang II. It involves activation of protein kinase C (PKC)beta subtype and phosphorylation and redistribution of myristoylated alanine-rich C kinase substrate (MARCKS) in neurites. Ang II caused a dramatic redistribution of MARCKS from neuronal varicosities to neurites. This was accompanied by a time-dependent stimulation of its phosphorylation, that was mediated by the angiotensin type 1 receptor subtype (AT1). Incubation of neurons with PKCbeta subtype specific antisense oligonucleotide (AON) significantly attenuated both redistribution and phosphorylation of MARCKS. Furthermore, depletion of MARCKS by MARCKS-AON treatment of neurons resulted in a significant decrease in Ang II-stimulated accumulation of TH and DbetaH immunoreactivities and [3H]NE uptake activity in synaptosomes. In contrast, mRNA levels of TH, DbetaH, and NET were not influenced by MARKS-AON treatment. MARCKS pep148-165, which contains PKC phosphorylation sites, inhibited Ang II stimulation of MARCKS phosphorylation and reduced the amount of TH, DbetaH, and [3H]NE uptake in neuronal synaptosomes. These observations demonstrate that phosphorylation of MARCKS by PKCbeta and its redistribution from varicosities to neurites is important in Ang II-induced synaptic accumulation of TH, DbetaH, and NE. They suggest that a coordinated stimulation of transcription of TH, DbetaH, and NET, mediated by Ras-Raf-MAP kinase followed by their transport mediated by PKCbeta-MARCKS pathway are key in persistent stimulation of Ang II's neuromodulatory actions.
    The Journal of Cell Biology 08/1998; 142(1):217-27. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypertension produces pathophysiological changes that are often responsible for the mortality associated with the disease. However, it is unclear whether normalizing blood pressure (BP) with conventional therapy is effective in reversing the pathophysiological damage. The duration and initiation of treatment, site of administration, and agent used all appear to influence the reversal of the pathophysiological alterations associated with hypertension. We have previously established that retrovirally mediated delivery of angiotensin II type 1 receptor antisense (AT1R-AS) attenuates the development of high BP in the spontaneously hypertensive (SH) rat model of human essential hypertension. Our objective was to determine whether this attenuation of high BP is associated with prevention of other pathophysiological changes induced by the hypertensive state. Intracardiac delivery of AT1R-AS in neonates prevented the development of hypertension in SH rats for at least 120 days. Contractile experiments demonstrated an impaired endothelium-dependent vascular relaxation (acetylcholine) and an enhanced contractile response to vasoactive agents (phenylephrine and KCl) in the SH rat renal vasculature. In addition, the voltage-dependent K+ current density, which is believed to contribute to smooth muscle resting membrane potential and basal tone, was decreased in renal resistance artery cells of the SH rat. AT1R-AS treatment prevented each of these renal vascular alterations. Finally, AT1R-AS delivery prevented the pathological alterations observed in the SH rat myocardium, including left ventricular hypertrophy, multifocal fibrosis, and perivascular fibrosis. These observations demonstrate that viral-mediated delivery of AT1R-AS attenuates the development of hypertension on a long term basis, and this is associated with prevention of pathophysiological changes in SH rats.
    Proceedings of the National Academy of Sciences 04/1998; 95(5):2664-9. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Both central and peripheral renin-angiotensin systems (RAS) are important in the development and establishment of hypertension. Thus, introducing genes relevant to RAS into neuronal and vascular smooth muscle (VSM) cells, two major targets for angiotensin (ANG) II action, is a prerequisite in considering a gene therapy approach for the control of ANG-dependent hypertension. In this study, we explored the use of adenoviral (Ad) vector to transfer AT1 receptor antisense cDNA (AT1R-AS) into neuronal and VSM cells with the anticipation of attenuation of ANG II-mediated cellular actions. Incubation of neurons and VSM cells with viral particles containing AT1R-AS (Ad-AT1R-AS) resulted in a robust expression of AT1R-AS in a majority (approximately 80%) of the cells. The expression was persistent for at least 28 days and was associated with decreases in the immunoreactive AT1 receptor protein and the maximal binding for AT1 receptor in a time- and dose-dependent manner in both cell types. ANG II stimulation of [3H]thymidine incorporation in VSM cells and norepinephrine transporter gene expression in neuronal cells were attenuated by Ad-AT1R-AS infection. Uninfected cells or cells infected with adenovirus particles containing a mutant AT1 receptor sense cDNA showed no effects on either AT1 receptor or on attenuation of ANG II's cellular affects. These observations show, for the first time, that adenovirus can be used to deliver AT1 receptor mutant sense and antisense cDNAs into two major ANG II target tissues. This consequently influences AT1 receptor-mediated cellular actions of ANG II.
    The American journal of physiology 03/1998; 274(2 Pt 2):H719-27. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic stimulation of brain neurons by angiotensin II (Ang II) results in a increase in norepinephrine (NE) uptake. This involves stimulation of transcription of NE transporter and tyrosine hydroxylase genes and is associated with translocation of signaling molecules and transcription factors from the cytoplasmic compartment into the neuronal nucleus (). We report here that the phosphorylation of p62, a glycoprotein nucleoporin of the nuclear pore complex (NPC), by MAP kinase is involved in this process. Ang II caused a time-dependent translocation of signal transducers and activators of transcription (STAT3) from the cytoplasmic compartment into the nucleus. This translocation was attenuated by pretreatment with antisense oligonucleotide (AON) to MAP kinase. Ang II also stimulated phosphorylation of p62, and a maximal phosphorylation of 12-fold was observed with 100 nM Ang II. This stimulation was blocked by losartan, an AT1 receptor subtype-specific antagonist. The conclusion that MAP kinase is involved in Ang II-induced phosphorylation of p62 and nuclear translocation of STAT3 is supported by the following. (1) p62 phosphorylation was blocked by a peptide that competes with p62 as a MAP kinase substrate both in vitro and in vivo; (2) AON to MAP kinase attenuated Ang II stimulation of p62 phosphorylation; and (3) in addition, it also blocked nuclear translocation of STAT3. Intracellular loading of the peptide containing MAP kinase substrate consensus of the p62 reduced Ang II stimulation of p62 phosphorylation and nuclear translocation of STAT3 in both in vivo and in vitro experiments. These observations suggest that Ang II-induced phosphorylation of p62 may accelerate the activity of the NPC, which would result in an increase in the nuclear transport of transcription factors and signaling molecules. This will stimulate transcriptional processes associated with Ang II regulation of NE neuromodulation.
    Journal of Neuroscience 03/1998; 18(4):1329-36. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (Ang II) interaction with the neuronal AT1 receptor results in a chronic stimulation of neuromodulation that involves the expression of norepinephrine transporter (NET) and tyrosine hydroxylase (TH). In view of this unique property and the presence of putative nuclear localization signal (NLS) consensus sequence in the AT1 receptor, this study was conducted to investigate the hypothesis that Ang II would induce nuclear sequestration of this G protein-coupled receptor and that the sequestration may have implications on Ang II-induced expression of NET and TH genes. Incubation of neuronal cultures with Ang II caused a time- and dose-dependent increase in the levels of AT1 receptor immunoreactivity in the nucleus. A 6.7-fold increase was observed with 100 nM Ang II, in 15 min, that was blocked by losartan, an AT1 receptor-specific antagonist. Ang II-induced nuclear sequestration was specific for AT1 receptor, because Ang II failed to produce a similar effect on neuronal AT2 receptors. The presence of the putative NLS sequence in the cytoplasmic tail of the AT1 receptor seems to be the key in nuclear targeting because: 1) nuclear targeting was attenuated by a peptide of the AT1 receptor that contained the putative NLS sequence; and 2) Ang II failed to cause nuclear translocation of the AT2 receptor, which does not contain the putative NLS. Ang II also caused a time- and dose-dependent stimulation of P62 phosphorylation, a glycoprotein of the nuclear pore complex. A 6-fold stimulation of phosphorylation was observed with 100 nM Ang II, in 15 min, that was completely blocked by losartan and not by PD123,319, an AT2 receptor specific antagonist. Preloading of neurons with p62-pep (a peptide containing consenses of mitogen-activated protein kinase in p62) resulted in a loss of Ang II-induced p62 phosphorylation and stimulation of NET and TH messenger RNA levels. In conclusion, these data demonstrate that Ang II induces nuclear sequestration of AT1 receptor involving NLS in the AT1 receptor and p62 of the nuclear pore complex in brain neurons. A possible role of such a nuclear targeting of the AT1 receptor on chronic neuromodulatory actions of Ang II has been discussed.
    Endocrinology 02/1998; 139(1):365-75. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (Ang II) interacts with the neuronal AT1 receptor subtype and initiates a cascade of signaling events involving activation of Ras-Raf-1-MAP kinase. Raf-1-dependent activation of mitogen-activated protein kinase (MAPK) is the key in the chronic norepinephrine neuromodulatory actions of Ang II and is associated with the translocation of MAPK into the nucleus. In view of these observations, this study was designed to determine if Ang II causes cellular redistribution of Raf-1 in neuronal cells. Most of Raf-1 was localized in the cytoplasmic compartment in neurons. Ang II treatment resulted in a time-dependent increase in the translocation of immunoreactive Raf-1 from the cytoplasm into the nucleus. A fourfold increase was observed in 15 min. The nuclear sequestration of Raf-1 was blocked by losartan, an AT1 receptor-specific antagonist, and not by PD123319, an AT2 receptor-specific antagonist. Confocal microscopic analysis of immunofluorescence data confirmed the nuclear translocation and further showed that Raf-1 was exclusively localized into the nucleolus. These observations demonstrate, for the first time, that Ang II stimulates Raf-1 targeting into the neuronal nucleus, and they suggest that this translocation may play a direct role in the transcriptional regulation of Ang II actions.
    Journal of Neurochemistry 02/1998; 70(1):424-7. · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.
    Regulatory Peptides 11/1997; 72(2-3):139-45. · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interruption of the renin-angiotensin system by pharmacological manipulations attenuates high blood pressure (BP) in the spontaneously hypertensive rat (SHR). However, these agents, such as losartan, need to be administered daily to maintain effective BP control. Therefore, we have hypothesized that a genetic intervention in the expression of angiotensin type 1 receptor (AT1R) should attenuate development of hypertension on a long-term basis in SHR. A retroviral-mediated AT1R antisense cDNA gene delivery system (LNSV-AT1R-AS) was used to test this hypothesis and to compare its BP-lowering effects with those of losartan. Introduction of LNSV-AT1R-AS into 5-day-old Wistar-Kyoto rats and SHR resulted in a robust expression of AT1R antisense (AS) within 3 days and persisted for at least 30 days. This expression was associated with a selective attenuation of high BP in SHR by 25 to 30 mm Hg. Although basal lowering of BP was exclusive to SHR, the angiotensin II (Ang II) pressor response was significantly reduced in all LNSV-AT1R-AS-treated rats. The decreased response to Ang II was associated with a similar attenuation of Ang II-induced dipsogenic responses in both strains of rats. The BP-lowering effects of LNSV-AT1R-AS treatment and losartan treatment were similar and primarily observed in SHR. However, the antihypertensive effect lasted less than 24 hours in losartan-treated SHR compared with 90 days in LNSV-AT1R-AS-treated SHR. In addition, losartan was unable to further lower BP in LNSV-AT1R-AS-treated SHR. Collectively, these results suggest that both losartan and LNSV-AT1R-AS treatment produces an antihypertensive response selectively in SHR that is mediated by interruption of AT1R function. However, a single, acute genetic treatment with LNSV-AT1R-AS can result in long-term control of high BP at a similar level of effectiveness as losartan, without altering plasma Ang II levels.
    Hypertension 10/1997; 30(3 Pt 1):363-70. · 6.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neuronal angiotensin II (Ang II) type 1 (AT1) receptor is coupled to the Ras-Raf-1-mitogen-activated protein (MAP) kinase signal-transduction pathway (Yang H, Lu D, Yu K, Raizada MK. Regulation of neuromodulatory actions of angiotensin II in the brain neurons by the Ras-dependent mitogen-activated protein kinase pathway. J Neurosci. 1996;16:4047-4058). In this study we compared the effects of angiotensin II (Ang II) on AT1 receptor phosphorylation and the ability of the phosphorylated receptor to bind Ang II in neuronal cultures of Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR) brains to further our understanding of the Ang II signaling mechanism. Ang II caused a time-dependent phosphorylation of AT1 receptors in both WKY and SHR brain neurons. The level of phosphorylation was higher in the SHR brain neurons; this finding was consistent with increased AT1 receptors in these cells. MAP kinase was involved in this phosphorylation, a conclusion supported by the following evidence: (1) exogenous MAP kinase phosphorylated the AT1 receptor; (2) PD98059, a MAP kinase kinase inhibitor, attenuated Ang II-stimulated AT1 receptor phosphorylation; and (3) MAP kinase and AT1 receptors were coimmunoprecipitated in Ang II-stimulated neurons. Finally, MAP kinase phosphorylation was associated with the loss of 125I-[Sar1-Ile8]-Ang II binding ability of the AT1 receptor in both strains of neurons. These observations show that Ang II stimulates phosphorylation of the neuronal AT1 receptor by a mechanism involving MAP kinase and that the phosphorylated neuronal AT1 receptor does not exhibit Ang II binding activity in the brains of either WKY or SHR.
    Hypertension 10/1997; 30(3 Pt 1):351-7. · 6.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (Ang II), via the activation of the AT1 and AT2 receptors regulates electrophysiological responses of catecholaminergic neurons. This study was designed to determine if functional interactions between AT1 and AT2 receptors exist in a single neuron. Ang II caused two unique electrophysiological responses characteristic of receptor crosstalk. First, Ang II elicited an AT1 receptor-mediated decrease in I(K) followed by an AT2 receptor-mediated increase in I(K). Second, Ang II elicited an AT2 receptor-mediated increase in I(K) followed by an AT1 receptor-mediated decrease in I(K). AT1 and AT2 receptors were co-localized on the catecholaminergic neurons. These observations suggest, for the first time, the existence of a crosstalk between Ang II receptor subtypes that may be significant in the physiological activity of catecholaminergic neurons.
    Endocrinology 06/1997; 138(5):2195-8. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MAP kinase stimulation is a key signaling event in the AT1 receptor (AT1R)-mediated chronic stimulation of tyrosine hydroxylase and norepinephrine transporter in brain neurons by angiotensin II (Ang II). In this study, we investigated the involvement of MAP kinase in AT1R phosphorylation to further our understanding of these persistent neuromodulatory actions of Ang II. Ang II caused a time-dependent phosphorylation of neuronal AT1R. This phosphorylation was associated with internalization and translocation of AT1R into the nucleus. MAP kinase also stimulated phosphorylation of neuronal AT1R. The conclusion that MAP kinase participates in neuronal AT1R phosphorylation and its targeting into the nucleus is supported further by the following. (1) MAP kinase-mediated phosphorylation of AT1R was blocked by the AT1R antagonist losartan; (2) AT1R co-immunoprecipitated with MAP kinase; (3) MAP kinase-kinase inhibitor PD98059 attenuated Ang II-induced phosphorylation of AT1R; and (4) PD98059 blocked Ang II-induced nuclear translocation of AT1Rs. In summary, these observations demonstrate that Ang II-induced phosphorylation of AT1R is mediated by its activation of MAP kinase. A possible role of AT1R translocation into the nucleus on persistent neuromodulatory actions of Ang II has been discussed.
    Journal of Neuroscience 04/1997; 17(5):1660-9. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.
    The Journal of Cell Biology 01/1997; 135(6 Pt 1):1609-17. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The renin-angiotensin system plays a crucial role in the development and establishment of the hypertensive state in the spontaneously hypertensive (SH) rat. Interruption of this system's activity by pharmacological means results in the lowering of blood pressure (BP) and control of hypertension. However, such means are temporary and require the continuous use of drugs for the control of this pathophysiological state. Our objective in this investigation was to determine if a virally mediated gene-transfer approach using angiotensin type 1 receptor antisense (AT1R-AS) could be used to control hypertension on a long-term basis in the SH rat model of human essential hypertension. Injection of viral particles containing AT1R-AS (LNSV-AT1R-AS) in 5-day-old rats resulted in a lowering of BP exclusively in the SH rat and not in the Wistar Kyoto normotensive control. A maximal anti-hypertensive response of 33 +/- 5 mmHg was observed, was maintained throughout development, and still persisted 3 months after administration of LNSV-AT1R-AS. The lowering of BP was associated with the expression of AT1R-AS transcript and decreases in AT1-receptor in many peripheral angiotensin II target tissues such as mesenteric artery, adrenal gland, heart, and kidney. Attenuation of angiotensin II-stimulated physiological actions such as contraction of aortic rings and increase in BP was also observed in the LNSV-AT1R-AS-treated SH rat. These observations show that a single injection of LNSV-AT1R-AS normalizes BP in the SH rat on a long-term basis. They suggest that such a gene-transfer strategy can be successfully used to control the development of hypertension on a permanent basis.
    Proceedings of the National Academy of Sciences 10/1996; 93(18):9960-5. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study we investigated the regulation of tyrosine hydroxylase (TH) by angiotensin II (Ang II) in an attempt to provide cellular and molecular evidence that this hormone has increased neuromodulatory actions in the spontaneously hypertensive (SH) rat brain. Neuronal cells in primary culture from the hypothalamus-brain stem of both normotensive [Wistar-Kyoto (WKY)] and SH rats have been used. These cultures mimic in vivo situations. Ang II caused a time-dependent increase in TH activity in WKY rat brain neurons. A maximal increase of 2.5-fold was observed with 100 nM Ang II in an actinomycin- and cycloheximide-dependent process. In addition, Ang II caused a parallel increase in TH messenger RNA (mRNA) levels, with a maximal stimulation of 5-fold in 4 h by 100 nM Ang II in WKY rat brain neurons. The stimulation of TH mRNA was mediated by the AT1 receptor subtype, resulted from an increase in its transcription, and involved activation of phospholipase C and protein kinase C. Antisense oligonucleotide for c-fos attenuated Ang II stimulation of TH mRNA in a time- and dose-dependent fashion, indicating an involvement of c-fos as a putative third messenger in Ang II stimulation of TH. Ang II also caused stimulation of TH activity and its mRNA levels in neuronal cultures of SH rat brain by a mechanism similar to that observed for neuronal cultures of WKY rat brain, involving AT1 receptors, protein kinase C, and c-fos. However, the stimulation of TH activity and that of TH mRNA were approximately 30% and 80% higher, respectively, in the SH rat brain neurons than those in the WKY rat brain neurons. In vivo experiments have been carried out to validate the elevated response of TH gene expression to Ang II in SH rat brain neuronal cultures. Ang II stimulated both TH activity and TH mRNA levels in the hypothalami and brain stems of adult WKY and SH rats. The level of stimulation in the brain of the SH rat was significantly higher than that in the WKY rat. These observations are consistent with an increase in AT1, receptor gene expression and suggest that increased TH gene expression could be the cellular/molecular basis for the greater neuromodulatory action of Ang II in the SH rat brain.
    Endocrinology 09/1996; 137(8):3566-76. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (Ang II) stimulates norepinephrine transporter (NET) and tyrosine hydroxylase (TH) in the neurons, but the signal transduction mechanism of this neuromodulation is not understood. Treatment of neuronal cultures of hypothalamus-brainstem with Ang II resulted in a time- and dose-dependent activation of Ras, Raf-1, and mitogen-activated protein kinase. This activation was mediated by the interaction of Ang II with the AT1, receptor subtype and was associated with the redistribution of AT1 receptor with Ras and Raf-1 on the neuronal membrane. Treatment with antisense oligonucleotide (AON) to mitogen-activated protein kinase decreased mitogen-activated protein kinase immunoreactivity by 70% and attenuated Ang II stimulation of c-fos, NET, and TH mRNA levels. This demonstrates that induction of these genes requires mitogen-activated protein kinase activation by Ang II. In contrast, AON to mitogen-activated protein kinase failed to inhibit Ang II stimulation of plasminogen activator inhibitor-1 mRNA levels. These results suggest that AT1 receptors are coupled to a Ras-Raf-1 mitogen-activated protein kinase signal transduction pathway that is responsible for stimulation of NET and TH, two neuro-modulatory actions of Ang II in the brain.
    Journal of Neuroscience 08/1996; 16(13):4047-58. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Norepinephrine causes downregulation of angiotensin II (Ang II) receptors in Wistar-Kyoto rat (WKY) brain neuronal cultures. The aim of this study was to compare the cross talk between Ang II and alpha1-adrenergic receptors in these neuronal cultures. Norepinephrine causes a 66 percent decrease in Bmax of Ang II type 1 (AT1) receptors in neuronal cultures of WKY brain. This decrease is mediated by the interaction of norepinephrine with the alpha1a-adrenergic receptor subtype. Norepinephrine also causes a decrease in mRNA levels for AT1 receptors. A maximal decrease of 83 percent in AT1, receptor mRNA is observed in 8 hours with 100 micromol/L norepinephrine, is blocked by 5-methyluradipil, and involves inhibition of AT1 receptor transcription. Furthermore, decreases in the AT1 receptor and its mRNA are associated with a significant attenuation of AT1 receptor-mediated stimulation of norepinephrine transporter mRNA in WKY brain neurons. In contrast, norepinephrine does not decrease AT1 receptors or mRNA and has no effect on Ang II stimulation of norepinephrine transporter mRNA in neuronal cultures of spontaneously hypertensive rat brain. Thus, these data show that norepinephrine-mediated downregulation of AT1 receptors is associated with a parallel decrease in AT1 mRNA and Ang II stimulation of norepinephrine transporter mRNA and involves the alpha1a-adrenergic receptor in neurons of WKY brain. This cross talk between the two receptors is lacking in neurons of spontaneously hypertensive rat brain.
    Hypertension 07/1996; 27(6):1277-83. · 6.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal cells in primary culture from the hypothalamus-brain stem areas of normotensive [Wistar-Kyoto (WKY)] and spontaneously hypertensive (SH) rat brains have been used in the present study to investigate an interaction between the brain renin-angiotensin II system and the plasminogen activator system. This is an attempt to further our understanding of the role of brain Ang II in the control of neuronal development and differentiation through its regulation of the extracellular matrix. Ang II caused a 10-fold stimulation of plasminogen activator inhibitor-1 (PAI-1) messenger RNA (mRNA) in WKY rat brain neuronal cultures. The stimulation was mediated by the AT1 receptor subtype and was accompanied by an increase in PAI-1 gene transcription and the synthesis of cellular PAI-1 protein. The stimulation involved activation of protein kinase C, and alterations in the intracellular Ca2+ pool caused a significant inhibition of Ang II stimulation of PAI mRNA. Ang II stimulation of PAI-1 mRNA succeeded its action on c-fos mRNA and was attenuated by c-fos antisense oligonucleotide. Although PAI-1 gene expression was also stimulated by Ang II in neuronal cultures of SH rat brain, two differences between WKY and SH rat brain neurons were observed: 1) the level of Ang II stimulation in SH rat neurons was 50% of that in WKY rat neurons; and 2) Ang II stimulation of c-fos was 2.4-fold higher in SH neurons than in WKY neurons, but c-fos antisense oligonucleotide did not attenuate the stimulatory action of Ang II on PAI-1 mRNA in SH neurons. These observations suggest that the changes in the Ang II-mediated signaling pathways and/or the regulatory region(s) of the PAI-1 gene may contribute to the differential actions of Ang II in WKY and SH rat brain neurons.
    Endocrinology 07/1996; 137(6):2503-13. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain angiotensin II (Ang II) plays a key role in blood pressure control in part by interacting with catecholamines (CA) and by stimulation of sympathetic pathways. The significance of Ang-CA interaction is further heightened by the presence of a hyperactive brain Ang II system in spontaneously hypertensive (SH) rat, a genetic model for essential hypertension. Neuronal cells in primary culture from the hypothalamus-brainstem that mimic in vivo situations in so far as many cellular actions of Ang II are concerned, have been used in the present study to elucidate Ang II regulation of CA by determining its cellular action on the norepinephrine transporter (NET) system. Ang II causes both acute and chronic stimulation of [3H]-norepinephrine (NE) uptake in neuronal cultures of Wistar Kyoto (WKY) rat brain. Acute stimulation begins as early as 5 min, reaches maximal levels in about 30 min in the presence of 100 nM Ang II, and is blocked by losartan, a specific antagonist for AT1 receptor subtype. In addition, this acute stimulation appears to be a posttranscriptional event and does not involve protein kinase C (PKC) or NET gene transcription. Chronic stimulation of [3H]-NE uptake by Ang II persists throughout the duration of Ang II incubation (24 h), is dose dependent, and is also mediated by AT1 receptor subtype. However, chronic stimulation of [3H]-NE uptake involves PKC, cfos, and NET gene transcription. Ang II also stimulates [3H]-NE uptake in neuronal cultures of SH rat brain, both acutely and chronically, by mechanisms similar to those observed in neuronal cultures of WKY rat brain. The stimulation of NET by Ang II is 2-fold higher than that seen in WKY and is consistent with increased AT1 receptor gene transcription and increased functional AT1 receptors in SH rat brain neurons compared with WKY rat brain neurons. The Ang II stimulation of the NET system is also higher in adult SH compared with WKY rats in vivo. These observations show that 1) Ang II stimulates the NET system both acutely and chronically, the former involving activation of preexisting transporters and the latter involving NET gene transcription and translation; and 2) Ang II stimulation of the NET system is elevated in SH rat brain neurons.
    Endocrinology 03/1996; 137(2):763-72. · 4.72 Impact Factor