D R Sengelaub

Indiana University-Purdue University School of Medicine, Indianapolis, Indiana, United States

Are you D R Sengelaub?

Claim your profile

Publications (101)402.71 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Surviving motoneurons undergo dendritic atrophy after spinal cord injury (SCI), suggesting an important therapeutic target for neuroprotective strategies to improve recovery of function after SCI. Our previous studies showed that phospholipase A2 (PLA2) may play an important role in the pathogenesis of SCI. In the present study, we investigated whether blocking cPLA2 pharmacologically with arachidonyl trifluoromethyl ketone (ATK) or genetically using cPLA2 knockout (KO) mice attenuates motoneuron atrophy following SCI. C57BL/6 mice received either sham or contusive SCI at the T10 level. At 30 min after SCI, mice were treated with ATK or vehicle. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. ATK administration reduced percent lesion volume and increased percent volume of spared white matter compared to the vehicle-treated control animals. SCI with or without ATK treatment had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with ATK. Similarly, the vastus lateralis muscle weights of untreated SCI animals were smaller than those of sham-surgery controls, and these reductions were prevented by ATK treatment. No effects on fiber cross-sectional areas, motor endplate area or density were observed across treatment groups. Remarkably, genetically deleting cPLA2 in cPLA2 KO mice attenuated dendritic atrophy after SCI. These findings suggest that after SCI, cord tissue damage and regressive changes in motoneuron and muscle morphology can be reduced by inhibition of cPLA2, further supporting a role for cPLA2 as a neurotherapeutic target for SCI treatment.
    Journal of neurotrauma. 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Moderate exercise in the form of treadmill training and brief electrical nerve stimulation both enhance axon regeneration after peripheral nerve injury. Different regimens of exercise are required to enhance axon regeneration in male and female mice (Wood et al.: Dev Neurobiol 72 (2012) 688-698), and androgens are suspected to be involved. We treated mice with the androgen receptor blocker, flutamide, during either exercise or electrical stimulation, to evaluate the role of androgen receptor signaling in these activity-based methods of enhancing axon regeneration. The common fibular (CF) and tibial (TIB) nerves of thy-1-YFP-H mice, in which axons in peripheral nerves are marked by yellow fluorescent protein (YFP), were transected and repaired using CF and TIB nerve grafts harvested from non-fluorescent donor mice. Silastic capsules filled with flutamide were implanted subcutaneously to release the drug continuously. Exercised mice were treadmill trained 5 days/week for 2 weeks, starting on the third day post-transection. For electrical stimulation, the sciatic nerve was stimulated continuously for 1 h prior to nerve transection. After 2 weeks, lengths of YFP+ profiles of regenerating axons were measured from harvested nerves. Both exercise and electrical stimulation enhanced axon regeneration, but this enhancement was blocked completely by flutamide treatments. Signaling through androgen receptors is necessary for the enhancing effects of treadmill exercise or electrical stimulation on axon regeneration in cut peripheral nerves. © 2013 Wiley Periodicals, Inc. Develop Neurobiol, 2013.
    Developmental Neurobiology 11/2013; · 4.42 Impact Factor
  • Source
  • Lauren M Rudolph, Dale R Sengelaub
    [Show abstract] [Hide abstract]
    ABSTRACT: The spinal cord of rats contains the sexually dimorphic motoneurons of the spinal nucleus of the bulbocavernosus (SNB). In males, SNB dendrites fail to grow after castration, but androgen or estrogen treatment supports dendritic growth in castrated males. Estrogenic support of SNB dendrite growth is mediated by estrogen receptors (ER) in the target muscle. ERα expression in cells lacking a basal lamina (referred to as "extra-muscle fiber cells") of the SNB target musculature coincides with the period of estrogen-dependent SNB dendrite growth. In the SNB target muscle, extra-muscle fiber ERα expression declines with age and is typically absent after postnatal (P) day 21 (P21). Given that estradiol downregulates ERα in skeletal muscle, we tested the hypothesis that depleting gonadal hormones would prevent the postnatal decline in ERα expression in the SNB target musculature. We castrated male rats at P7 and assessed ERα immunolabeling at P21; ERα expression was significantly greater in castrated males compared with normal animals. Because ERα expression in SNB target muscles mediates estrogen-dependent SNB dendrogenesis, we further hypothesized that the castration-induced increase in muscle ERα would heighten the estrogen sensitivity of SNB dendrites. Male rats were castrated at P7 and treated with estradiol from P21 to P28; estradiol treatment in castrates resulted in dendritic hypertrophy in SNB motoneurons compared with normal males. We conclude that early castration results in an increase in ERα expression in the SNB target muscle, and this upregulation of ERα supports estrogen sensitivity of SNB dendrites, allowing for hypermasculinization of SNB dendritic arbors. © 2013 Wiley Periodicals, Inc. Develop Neurobiol, 2013.
    Developmental Neurobiology 08/2013; · 4.42 Impact Factor
  • Mollee R Farrell, Dale R Sengelaub, Cara L Wellman
    [Show abstract] [Hide abstract]
    ABSTRACT: There are sex differences in the rates of many stress-sensitive psychological disorders such as post traumatic stress disorder (PTSD). As medial prefrontal cortex and amygdala are implicated in many of these disorders, understanding differential stress effects in these regions may shed light on the mechanisms underlying sex-dependent expression of disorders like depression and anxiety. Prefrontal cortex and amygdala are key regions in the neural circuitry underlying fear conditioning and extinction, which thus has emerged as a useful model of stress influences on the neural circuitry underlying regulation of emotional behavior. This review outlines the current literature on sex differences and stress effects on dendritic morphology within medial prefrontal cortex and basolateral amygdala. Such structural differences and/or alterations can have important effects on fear conditioning and extinction, behaviors that are mediated by the basolateral amygdala and prefrontal cortex, respectively. Given the importance of extinction-based exposure therapy as a treatment for anxiety disorders such as PTSD, understanding the neural mechanisms by which stress differentially influences fear learning and extinction in males and females is an important goal for developing sex-appropriate interventions for stress-related disorders.
    Physiology & Behavior 04/2013; · 3.16 Impact Factor
  • Tom Verhovshek, Dale R Sengelaub
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated that brain-derived neurotrophic factor (BDNF) interacts with testosterone to regulate dendritic morphology of motoneurons in the highly androgen-sensitive spinal nucleus of the bulbocavernosus (SNB). Additionally, in adult male rats testosterone regulates BDNF in SNB motoneurons and its target muscle, the bulbocavernosus (BC). Because BDNF is retrogradely transported from skeletal muscles to spinal motoneurons, we hypothesized that testosterone could regulate BDNF in SNB motoneurons by acting locally at the BC muscle. To test this hypothesis, we restricted androgen manipulation to the SNB target musculature. After castration, BDNF immunolabeling in SNB motoneurons was maintained at levels similar to those of gonadally intact males by delivering testosterone treatment directly to the BC muscle. When the same implant was placed interscapularly in castrated males it was ineffective in supporting BDNF immunolabeling in SNB motoneurons. Furthermore, BDNF immunolabeling in gonadally intact adult males given the androgen receptor blocker hydroxyflutamide delivered directly to the BC muscle was decreased compared to that of gonadally intact animals that had the same hydroxyflutamide implant placed interscapularly, or when compared to castrated animals that had testosterone implants at the muscle. These results demonstrate that the BC musculature is a critical site of action for the androgenic regulation of BDNF in SNB motoneurons and that it is both necessary and sufficient for this action. Furthermore, the local action of androgens at the BC muscle in regulating BDNF provides a possible mechanism underlying the interactive effects of testosterone and BDNF on motoneuron morphology. © 2013 Wiley Periodicals, Inc. Develop Neurobiol, 2013.
    Developmental Neurobiology 03/2013; · 4.42 Impact Factor
  • T. Verhovshek, L.M. Rudolph, D.R. Sengelaub
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurotrophic factors and steroid hormones interact to regulate a variety of neuronal processes such as neurite outgrowth, differentiation, and neuroprotection. The coexpression of steroid hormone and neurotrophin receptor mRNAs and proteins, as well as their reciprocal regulation provides the necessary substrates for such interactions to occur. This review will focus on androgen brain-derived neurotrophic factor (BDNF) interactions in the spinal cord, describing androgen regulation of BDNF in neuromuscular systems following castration, androgen manipulation, and injury. Androgens interact with BDNF during development to regulate normally-occurring motoneuron death, and in adulthood, androgen–BDNF interactions are involved in the maintenance of several features of neuromuscular systems. Androgens regulate BDNF and trkB expression in spinal motoneurons. Androgens also regulate BDNF levels in the target musculature, and androgenic action at the muscle regulates BDNF levels in motoneurons. These interactions have important implications for the maintenance of motoneuron morphology. Finally, androgens interact with BDNF after injury, influencing soma size, dendritic morphology, and axon regeneration. Together, these findings provide further insight into the development and maintenance of neuromuscular systems and have implications for the neurotherapeutic/neuroprotective roles of androgens and trophic factors in the treatment of motoneuron disease and recovery from injury.
    Neuroscience 10/2012; 239:103–114. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the postpartum period, women experience significant changes in their neuroendocrine profiles and social behavior compared to before pregnancy. A common experience with motherhood is a decrease in sexual desire. Although the lifestyle and peripheral physiological changes associated with parturition might decrease a woman's sexual interest, we hypothesized that there are also hormone-mediated changes in women's neural response to sexual and infant stimuli with altered reproductive priorities. We predicted that amygdala activation to sexually arousing stimuli would be suppressed in postpartum versus nulliparous women, and altered with intranasal oxytocin administration. To test this, we measured amygdala activation using fMRI in response to sexually arousing pictures, infant pictures, and neutral pictures in 29 postpartum and 30 nulliparous women. Half of the women received a dose of exogenous oxytocin before scanning. As predicted, nulliparous women subjectively rated sexual pictures to be more arousing, and infant pictures to be less arousing, than did postpartum women. However, nulliparous women receiving the nasal oxytocin spray rated the infant photos as arousing as did postpartum women. Right amygdala activation was lower in postpartum versus nulliparous women in response to sexual, infant, and neutral images, suggesting a generalized decrease in right amygdala responsiveness to arousing images with parturition. There was no difference in right amygdala activation with nasal spray application. Postpartum women therefore appear to experience a decrease in sexual interest possibly as a feature of a more generalized decrease in amygdala responsiveness to arousing stimuli.
    Hormones and Behavior 10/2012; · 3.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuroendocrine state of new mothers may alter their neural processing of stressors in the environment through modulatory actions of oxytocin on the limbic system. We predicted that amygdala sensitivity to negatively arousing stimuli would be suppressed in postpartum compared to nulliparous women and that this suppression would be modulated by administration of oxytocin nasal spray. We measured brain activation (fMRI) and subjective arousal in response to negatively arousing pictures in 29 postpartum and 30 nulliparous women who received either oxytocin nasal spray or placebo before scanning. Pre- and post-exposure urinary cortisol levels were also measured. Postpartum women (placebo) demonstrated lower right amygdala activation in response to negative images, lower cortisol and lower negative photo arousal ratings to nulliparous women. Nulliparous women receiving oxytocin had lower right amygdala activation compared to placebo. Cortisol levels in the placebo group, and ratings of arousal across all women, were positively associated with right amygdala activation. Together, these findings demonstrate reductions in both amygdala activation and subjective negative arousal in untreated postpartum vs nulliparous women, supporting the hypothesis of an attenuated neural response to arousing stimuli in postpartum women. A causal role of oxytocin and the timing of potential effects require future investigation.
    Social Cognitive and Affective Neuroscience 09/2012; · 5.04 Impact Factor
  • Source
    Lauren M Rudolph, Dale R Sengelaub
    [Show abstract] [Hide abstract]
    ABSTRACT: The spinal cord of rats contains the sexually dimorphic, steroid-sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB). In males, SNB dendrite growth is dependent on gonadal steroids: dendrite growth is inhibited after castration, but supported in androgen- or estrogen-treated castrated males. Furthermore, estrogenic support of SNB dendrite growth is mediated by estrogen action at the target musculature, inhibited by estrogen receptor (ER) blockade at the muscle and supported by local estradiol treatment. However, this estrogenic support is restricted to the early postnatal period, after which the morphology of SNB dendrites is insensitive to estrogens. To test if the developmentally restricted effects of estrogens on SNB dendrite growth coincide with the transient expression of ER in the target musculature, ERα expression was assessed during development and in adulthood. ERα expression in extra-Muscle fiber cells was greatest from postnatal day 7 (P7) to P14 and declined after P21. Because this pattern of ERα expression coincided with the period of estrogen-dependent dendrite growth, we tested if limiting hormone exposure to the period of maximal ERα expression in extra-muscle fiber cells could fully support estrogen-dependent SNB dendrite growth. We restricted estradiol treatment in castrated males from P7 to P21 and assessed SNB dendritic morphology at P28. Treating castrates with estradiol implants at the muscle from P7 to P21 supported dendrite growth to normal levels through P28. These data suggest that the transient ERα expression in target muscle could potentially define the critical period for estrogen-dependent dendrite growth in SNB motoneurons. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012.
    Developmental Neurobiology 06/2012; · 4.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Testosterone (T) regulates many traits related to fitness, including aggression. However, individual variation in aggressiveness does not always relate to circulating T, suggesting that behavioural variation may be more closely related to neural sensitivity to steroids, though this issue remains unresolved. To assess the relative importance of circulating T and neural steroid sensitivity in predicting behaviour, we measured aggressiveness during staged intrusions in free-living male and female dark-eyed juncos (Junco hyemalis). We compared aggressiveness to plasma T levels and to the abundance of androgen receptor (AR), aromatase (AROM) and oestrogen receptor alpha (ORα) mRNA in behaviourally relevant brain areas (avian medial amygdala, hypothalamus and song control regions). We also asked whether patterns of covariation among behaviour and endocrine parameters differed in males and females, anticipating that circulating T may be a better predictor of behaviour in males than in females. We found that circulating T related to aggressiveness only in males, but that gene expression for ORα, AR and AROM covaried with individual differences in aggressiveness in both sexes. These findings are among the first to show that individual variation in neural gene expression for three major sex steroid-processing molecules predicts individual variation in aggressiveness in both sexes in nature. The results have broad implications for our understanding of the mechanisms by which aggressive behaviour may evolve.
    Proceedings of the Royal Society B: Biological Sciences 06/2012; 279(1742):3547-55. · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Treatment with testosterone is neuroprotective/neurotherapeutic after a variety of motoneuron injuries. Here we assessed whether testosterone might have similar beneficial effects after spinal cord injury (SCI). Young adult female rats received either sham or T9 spinal cord contusion injuries and were implanted with blank or testosterone-filled Silastic capsules. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. Contusion injury resulted in large lesions, with no significant differences in lesion volume, percent total volume of lesion, or spared white or gray matter between SCI groups. SCI with or without testosterone treatment also had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with testosterone. Similarly, the vastus lateralis muscle weights and fiber cross-sectional areas of untreated SCI animals were smaller than those of sham-surgery controls, and these reductions were both prevented by testosterone treatment. No effects on motor endplate area or density were observed across treatment groups. These findings suggest that regressive changes in motoneuron and muscle morphology seen after SCI can be prevented by testosterone treatment, further supporting a role for testosterone as a neurotherapeutic agent in the injured nervous system.
    The Journal of Comparative Neurology 02/2012; 520(12):2683-96. · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dendritic arbors of spinal motoneurons are dynamically regulated by a variety of factors, and several lines of evidence indicate that trophic interactions with the target musculature are of central importance. In highly androgen-sensitive motoneuron populations, androgens are thought to regulate motoneuron dendrites through their action at the receptor-enriched target musculature. Using rats transgenically modified to overexpress androgen receptor (AR) in skeletal muscle, we directly tested the hypothesis that the enhanced expression of AR in the target musculature can underlie the androgenic regulation of motoneuron dendritic morphology. The morphology of motoneurons innervating the quadriceps muscle was examined in wild-type (WT) rats as well as in rats that had been transgenically modified to overexpress ARs in their skeletal musculature. Motoneurons innervating the vastus lateralis muscle of the quadriceps in gonadally intact male rats, and castrated males with or without androgen replacement, were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. In WT rats, quadriceps motoneuron dendrites were insensitive to hormonal manipulation. In contrast, quadriceps motoneuron dendrites in gonadally intact transgenic males were larger than those of WT males. Furthermore, overexpression of ARs in the quadriceps muscle resulted in androgen sensitivity in dendrites, with substantial reductions in dendritic length occurring after castration; this reduction was prevented with testosterone replacement. Thus, it appears that the androgen sensitivity of motoneuron dendrites is conferred indirectly via the enrichment of ARs in the musculature.
    Endocrinology 02/2011; 152(2):639-50. · 4.72 Impact Factor
  • Source
    Tom Verhovshek, Dale R Sengelaub
    [Show abstract] [Hide abstract]
    ABSTRACT: In adult male rats, androgens are necessary for the maintenance of the motoneurons and their target muscles of the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB) neuromuscular system, regulating motoneuron and muscle morphology, function, and expression of trophic factors. Castration of males results in somal, dendritic, and muscle atrophy as well as increases in brain-derived neurotrophic factor (BDNF) in the target musculature. Because BDNF can have either facilitative or inhibitory effects in other systems, we examined SNB neuromuscular morphology after BDNF blockade using a fusion protein (tyrosine kinase receptor type B IgG). Blockade of BDNF in gonadally intact males resulted in hypertrophy of SNB motoneuron dendrites and target musculature, suggesting that normal levels of BDNF are inhibitory in SNB neuromuscular system. BDNF blockade in castrated males prevented SNB motoneuron atrophy and attenuated target muscle weight loss. This is the first demonstration that the highly androgen-sensitive SNB motoneuron dendrites and target muscles can be maintained in the absence of gonadal hormones and, furthermore, that blocking BDNF can have trophic effects on skeletal muscle. These results suggest that whereas BDNF is involved in the signaling cascade mediating the androgenic support of SNB neuromuscular morphology, its action can be inhibitory. Furthermore, the elevations in BDNF after castration may be responsible for the castration-induced atrophy in SNB motoneurons and target muscles, and the trophic effects of androgens may be mediated in part through a suppression of BDNF. These results may have relevance to therapeutic approaches to the treatment of neurodegenerative disease or myopathies.
    Endocrinology 11/2010; 151(11):5337-48. · 4.72 Impact Factor
  • Source
    Kathryn M Lenz, Dale R Sengelaub
    [Show abstract] [Hide abstract]
    ABSTRACT: Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking results in decreased motoneuron number, size, and dendritic length in the adult SNB, as well as deficits in adult male copulatory behavior. Our previous findings that licking-like tactile stimulation influences SNB dendritic development and upregulates Fos expression in the lumbosacral spinal cord suggest that afferent signaling is changed by differences in maternal stimulation. Oxytocin afferents from the hypothalamus are a possible candidate, given previous research that has shown oxytocin is released following sensory stimulation, oxytocin modulates excitability in the spinal cord, and is a pro-erectile modulator of male sex behavior. In this experiment, we used immunofluorescence and immediate early gene analysis to assess whether licking-like tactile stimulation of the perineum activated parvocellular oxytocinergic neurons in the hypothalamus in neonates. We also used enzyme immunoassay to determine whether this same stroking stimulation produced an increase in spinal oxytocin levels. We found that stroking increased Fos immunolabeling in small oxytocin-positive cells in the paraventricular nucleus of the hypothalamus, in comparison to unstroked or handled control pups. In addition, 60s of licking-like perineal stimulation produced a transient 89% increase in oxytocin levels in the lumbosacral spinal cord. Together, these results suggest that oxytocin afferent activity may contribute to the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior.
    Hormones and Behavior 09/2010; 58(4):575-81. · 3.74 Impact Factor
  • Source
    Brandt W Young, Dale R Sengelaub, Joseph E Steinmetz
    [Show abstract] [Hide abstract]
    ABSTRACT: Binge-level doses of ethanol have been demonstrated to severely disrupt the cerebellum and cerebellum-dependent tasks when administered to rodent subjects during the early postnatal period. N-methyl-d-aspartic acid (NMDA) receptor-mediated excitotoxicity associated with ethanol withdrawal has been implicated as a significant component contributing to neurotoxic effects resulting from early ethanol exposure, and studies using MK-801 (dizocilpine) have reported protection from ethanol-induced damage. The present study examined whether the administration of MK-801 during ethanol withdrawal would ameliorate ethanol-associated cell death in the interpositus nucleus of the cerebellum and behavioral deficits in a cerebellar dependent task. Long Evans rat pups were treated with ethanol (5.25 g/kg) in a binge-like manner on postnatal day 6 using intragastric intubation. Subjects then received an injection of MK-801 (0.5mg/kg) or vehicle during withdrawal, 30h after ethanol exposure. Rats were then trained on an eyeblink classical conditioning task as juveniles (40 days of age), and cerebellar interpositus nucleus numbers were assessed after conditioning. Ethanol-exposed subjects exhibited reductions in neuronal populations and behavioral deficits during eyeblink conditioning. However, MK-801 administration significantly attenuated observed deficiencies, suggesting a protective effect resulting from MK-801 treatment during ethanol withdrawal. These results support the role of NMDA receptor-mediated excitotoxicity as a component mechanism by which ethanol produces teratogenicity. Additionally, our findings support previous reports that have shown correlations between dependent measures of eyeblink classical-conditioning behavior and unbiased cell counts in the interpositus nucleus.
    Alcohol (Fayetteville, N.Y.) 06/2010; 44(4):359-69. · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). Androgens are necessary for the development of the SNB neuromuscular system, and in adulthood, continue to influence the morphology and function of the motoneurons and their target musculature. However, estrogens are also involved in the development of the SNB system, and are capable of maintaining function in adulthood. In this experiment, we assessed the ability of testosterone metabolites, estrogens and nonaromatizable androgens, to maintain neuromuscular morphology in adulthood. Motoneuron and muscle morphology was assessed in adult normal males, sham-castrated males, castrated males treated with testosterone, dihydrotestosterone, estradiol, or left untreated, and gonadally intact males treated with the 5alpha-reductase inhibitor finasteride or the aromatase inhibitor fadrozole. After 6 weeks of treatment, SNB motoneurons were retrogradely labeled with cholera toxin-HRP and reconstructed in three dimensions. Castration resulted in reductions in SNB target muscle size, soma size, and dendritic morphology. Testosterone treatment after castration maintained SNB soma size, dendritic morphology, and elevated target muscle size; dihydrotestosterone treatment also maintained SNB dendritic length, but was less effective than testosterone in maintaining both SNB soma size and target muscle weight. Treatment of intact males with finasteride or fadrozole did not alter the morphology of SNB motoneurons or their target muscles. In contrast, estradiol treatment was completely ineffective in preventing castration-induced atrophy of the SNB neuromuscular system. Together, these results suggest that the maintenance of adult motoneuron or muscle morphology is strictly mediated by androgens.
    Developmental Neurobiology 12/2009; 70(4):206-21. · 4.42 Impact Factor
  • Source
    Randall E Wilson, Kellie D Coons, Dale R Sengelaub
    [Show abstract] [Hide abstract]
    ABSTRACT: Motoneuron loss is a significant medical problem, capable of causing severe movement disorders and even death. We have previously demonstrated that partial depletion of motoneurons induces dendritic atrophy in remaining motoneurons, with a concomitant reduction in motor activation. Treatment of male rats with testosterone attenuates the regressive changes following partial motoneuron depletion. To test whether testosterone has similar effects in females, we examined potential neuroprotective effects in motoneurons innervating muscles of the quadriceps of female rats. Motoneurons were selectively killed by intramuscular injection of cholera toxin-conjugated saporin. Simultaneously, some saporin-injected rats were given implants containing testosterone or left untreated. Four weeks later, surviving motoneurons were labeled with cholera toxin-conjugated HRP, and dendritic arbors were reconstructed in three dimensions. Compared to normal females, partial motoneuron depletion resulted in decreased dendritic length in remaining quadriceps motoneurons, and this atrophy was greatly attenuated by testosterone treatment. These findings suggest that testosterone has neuroprotective effects on morphology in both males and females, further supporting a role for testosterone as a neurotherapeutic agent in the injured nervous system.
    Neuroscience Letters 10/2009; 465(2):123-7. · 2.03 Impact Factor
  • Tom Verhovshek, Yi Cai, Mark C Osborne, Dale R Sengelaub
    [Show abstract] [Hide abstract]
    ABSTRACT: Trophic factors maintain motoneuron morphology and function in adulthood. Brain-derived neurotrophic factor (BDNF) interacts with testosterone to maintain dendritic morphology of spinal motoneurons. In addition, testosterone regulates BDNF's receptor (trkB) in motoneurons innervating the quadriceps muscles as well as in motoneurons of the highly androgen-sensitive spinal nucleus of the bulbocavernosus (SNB). Given these interactive effects, we examined whether androgen might also regulate BDNF in quadriceps and SNB motoneurons and their corresponding target musculature. In both motoneuron populations, castration of males reduced BDNF immunolabeling, and this effect was prevented with testosterone replacement. ELISA for BDNF in the target musculature of quadriceps (vastus lateralis, VL) and SNB (bulbocavernosus, BC) motoneurons revealed that BDNF in the VL and BC muscles was also regulated by androgen. However, although castration significantly decreased BDNF concentration in the VL muscle, BDNF concentration in the BC muscle was significantly increased in castrates. Treatment of castrated males with testosterone maintained BDNF levels at those of intact males in both sets of muscles. Together, these results demonstrate that androgens regulate BDNF in both a sexually dimorphic, highly androgen-sensitive neuromuscular system as well as a more typical somatic neuromuscular system. Furthermore, in addition to the regulation of trkB, these studies provide another possible mechanism for the interactive effects of testosterone and BDNF on motoneuron morphology. More importantly, by examining both the motoneurons and the muscles they innervate, these results demonstrate that within a neural system, BDNF levels in different components are differentially affected by androgen manipulation.
    Endocrinology 10/2009; 151(1):253-61. · 4.72 Impact Factor
  • Source
    Keith N Fargo, Allison M Foster, Dale R Sengelaub
    [Show abstract] [Hide abstract]
    ABSTRACT: Motoneuron loss is a significant medical problem, capable of causing severe movement disorders or even death. We have previously shown that motoneuron death induces marked dendritic atrophy in surviving nearby motoneurons. Additionally, in quadriceps motoneurons, this atrophy is accompanied by decreases in motor nerve activity. However, treatment with testosterone partially attenuates changes in both the morphology and activation of quadriceps motoneurons. Testosterone has an even larger neuroprotective effect on the morphology of motoneurons of the spinal nucleus of the bulbocavernosus (SNB), in which testosterone treatment can completely prevent dendritic atrophy. The present experiment was performed to determine whether the greater neuroprotective effect of testosterone on SNB motoneuron morphology was accompanied by a greater neuroprotective effect on motor activation. Right side SNB motoneurons were killed by intramuscular injection of cholera toxin-conjugated saporin in adult male Sprague-Dawley rats. Animals were either given Silastic testosterone implants or left untreated. Four weeks later, left side SNB motor activation was assessed with peripheral nerve recording. The death of right side SNB motoneurons resulted in several changes in the electrophysiological response properties of surviving left side SNB motoneurons, including decreased background activity, increased response latency, increased activity duration, and decreased motoneuron recruitment. Treatment with exogenous testosterone attenuated the increase in activity duration and completely prevented the decrease in motoneuron recruitment. These data provide a functional correlate to the known protective effects of testosterone treatment on the morphology of these motoneurons, and further support a role for testosterone as a therapeutic agent in the injured nervous system.
    Developmental Neurobiology 09/2009; 69(12):825-35. · 4.42 Impact Factor

Publication Stats

3k Citations
402.71 Total Impact Points

Institutions

  • 2012–2013
    • Indiana University-Purdue University School of Medicine
      • Department of Neurological Surgery
      Indianapolis, Indiana, United States
  • 1989–2012
    • Indiana University Bloomington
      • Department of Psychological and Brain Sciences
      Bloomington, IN, United States
    • University of Southern California
      Los Angeles, California, United States
  • 2010
    • University of Maryland, Baltimore
      Baltimore, Maryland, United States
  • 2009
    • Edward Hines, Jr. VA Hospital
      Hines, Oregon, United States
  • 2004
    • Taipei Medical University
      • Department of Physiology
      T’ai-pei, Taipei, Taiwan
  • 1998–2003
    • University of Michigan
      Ann Arbor, Michigan, United States
  • 1994
    • Lexington VA Medical Center
      Washington, Washington, D.C., United States
  • 1981–1989
    • Cornell University
      • Department of Psychology
      Ithaca, NY, United States