Chris Albanese

Georgetown University, Washington, Washington, D.C., United States

Are you Chris Albanese?

Claim your profile

Publications (139)795.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target.
    Oncotarget 03/2015; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cell cycle is a highly conserved and tightly regulated biological system that controls cellular proliferation and differentiation. The cell cycle regulatory proteins, which include the cyclins, the cyclin-dependent kinases (CDKs), and the CDK inhibitors, are critical for the proper temporal and spatial regulation of cellular proliferation. Conversely, alterations in cell cycle regulatory proteins, leading to the loss of normal cell-cycle control, are a hallmark of many cancers, including gastrointestinal cancers. Accordingly, overexpression of CDKs and cyclins and by contrast loss of CDK inhibitors, are all linked to gastrointestinal cancers and are often associated with less favorable prognoses and outcomes. Because of the importance that the cell cycle regulatory proteins play in tumorigenesis, currently there is a broad spectrum of cell-cycle inhibitors under development that, as a group, hold promise as effective cancer treatments. In support of this approach to cancer treatment, the growing availability of molecular diagnostics techniques may help in identifying patients who have driving abnormalities in the cell-cycle machinery and are thus more likely to respond to cell-cycle inhibitors. In this review, we discuss the prevalence of cell-cycle abnormalities in patients with gastrointestinal cancers and provide a preclinical and clinical overview of new agents that target cell-cycle abnormalities with a special emphasis on gastrointestinal cancers. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
    American Journal Of Pathology 03/2015; 185(5). DOI:10.1016/j.ajpath.2015.01.008 · 4.60 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ewing sarcoma (ES) develops in bones or soft tissues of children and adolescents. The presence of bone metastases is one of the most adverse prognostic factors, yet the mechanisms governing their formation remain unclear. As a transcriptional target of EWS-FLI1, the fusion protein driving ES transformation, neuropeptide Y (NPY) is highly expressed and released from ES tumors. Hypoxia up-regulates NPY and activates its pro-metastatic functions. To test the impact of NPY on ES metastatic pattern, ES cell lines, SK-ES1 and TC71, with high and low peptide release, respectively, were used in an orthotopic xenograft model. ES cells were injected into gastrocnemius muscles of SCID/beige mice, the primary tumors excised, and mice monitored for the presence of metastases. SK-ES1 xenografts resulted in thoracic extra-osseous metastases (67%) and dissemination to bone (50%) and brain (25%), while TC71 tumors metastasized to the lungs (70%). Bone dissemination in SK-ES1 xenografts associated with increased NPY expression in bone metastases and its accumulation in bone invasion areas. The genetic silencing of NPY in SK-ES1 cells reduced bone degradation. Our study supports the role for NPY in ES bone invasion and provides new models for identifying pathways driving ES metastases to specific niches and testing anti-metastatic therapeutics.
    Oncotarget 01/2015; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ever growing "omics" data and continuously accumulated biological knowledge provide an unprecedented opportunity to identify molecular biomarkers and their interactions that are responsible for cancer phenotypes that can be accurately defined by clinical measurements such as in vivo imaging. Since signaling or regulatory networks are dynamic and context-specific, systematic efforts to characterize such structural alterations must effectively distinguish significant network rewiring from random background fluctuations. Here we introduced a novel integration of network biology and imaging to study cancer phenotypes and responses to treatments at the molecular systems level. Specifically, Differential Dependence Network (DDN) analysis was used to detect statistically significant topological rewiring in molecular networks between two phenotypic conditions, and in vivo Magnetic Resonance Imaging (MRI) was used to more accurately define phenotypic sample groups for such differential analysis. We applied DDN to analyze two distinct phenotypic groups of breast cancer and study how genomic instability affects the molecular network topologies in high-grade ovarian cancer. Further, FDA-approved arsenic trioxide (ATO) and the ND2-SmoA1 mouse model of Medulloblastoma (MB) were used to extend our analyses of combined MRI and Reverse Phase Protein Microarray (RPMA) data to assess tumor responses to ATO and to uncover the complexity of therapeutic molecular biology.
    IEEE/ACM Transactions on Computational Biology and Bioinformatics 11/2014; 11(6):1009-1019. DOI:10.1109/TCBB.2014.2338304 · 1.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53 tumor suppressor protein plays a crucial role in influencing cell fate decisions in response to cellular stress. As p53 elicits cell cycle arrest, senescence or apoptosis, the integrity of the p53 pathway is considered a key determinant of anti-tumor responses. p53 can also promote autophagy, however the role of p53-dependent autophagy in chemosensitivity is poorly understood. VMY-1-103 (VMY), a dansylated analog of purvalanol B, displays rapid and potent anti-tumor activities, however the pathways by which VMY works are not fully defined. Using established prostate cancer cell lines and novel conditionally reprogrammed cells (CRCs) derived from prostate cancer patients; we have defined the mechanisms of VMY-induced prostate cancer cell death. Herein, we show that the cytotoxic effects of VMY required a p53-dependent induction of autophagy, and that inhibition of autophagy abrogated VMY-induced cell death. Cancer cell lines harboring p53 missense mutations evaded VMY toxicity and treatment with a small molecule compound that restores p53 activity re-established VMY-induced cell death. The elucidation of the molecular mechanisms governing VMY-dependent cell death in cell lines, and importantly in CRCs, provides the rationale for clinical studies of VMY, alone or in combination with p53 reactivating compounds, in human prostate cancer.
    Oncotarget 09/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabotropic glutamate 1 (mGlu) receptor has been proposed as a target for the treatment of metastatic melanoma. Studies have demonstrated that inhibiting the release of glutamate (the natural ligand of mGlu1 receptors), results in a decrease of melanoma tumor growth in mGlu1 receptor-expressing melanomas. Here we demonstrate that mGlu1 receptors, which have been previously characterized as oncogenes, also behave like dependence receptors by creating a dependence on glutamate for sustained cell viability. In the mGlu1 receptor-expressing melanoma cell lines SK-MEL-2 (SK2) and SK-MEL-5 (SK5), we show that glutamate is both necessary and sufficient to maintain cell viability, regardless of underlying genetic mutations. Addition of glutamate increased DNA synthesis, whereas removal of glutamate not only suppressed DNA synthesis but also promoted cell death in SK2 and SK5 melanoma cells. Using genetic and pharmacological inhibitors, we established that this effect of glutamate is mediated by the activation of mGlu1 receptors. The stimulatory potential of mGlu1 receptors was further confirmed in vivo in a melanoma cell xenograft model. In this model, subcutaneous injection of SK5 cells with short hairpin RNA-targeted downregulation of mGlu1 receptors resulted in a decrease in the rate of tumor growth relative to control. We also demonstrate for the first time that a selective mGlu1 receptor antagonist JNJ16259685 ((3,4-Dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone) slows SK2 and SK5 melanoma tumor growth in vivo. Taken together, these data suggest that pharmacological inhibition of mGlu1 receptors may be a novel approach for the treatment of metastatic melanoma.Oncogene advance online publication, 28 July 2014; doi:10.1038/onc.2014.231.
    Oncogene 07/2014; 34(21). DOI:10.1038/onc.2014.231 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations of the p53 gene hallmark many human cancers. Several p53 mutant proteins acquire the capability to promote cancer progression and metastasis, a phenomenon defined as Gain of Oncogenic Function (GOF). The downstream targets by which GOF p53 mutants perturb cellular programs relevant to oncogenesis are only partially known. We have previously demonstrated that SLC25A1 (CIC) promotes tumorigenesis, while its inhibition blunts tumor growth. We now report that CIC is a direct transcriptional target of several p53 mutants. We identify a novel interaction between mutant p53 (mutp53) and the transcription factor FOXO-1 which is responsible for regulation of CIC expression levels. Tumor cells harboring mutp53 display higher CIC levels relative to p53 null or wild-type tumors, and inhibition of CIC activity blunts mutp53-driven tumor growth, partially overcoming GOF activity. CIC inhibition also enhances the chemotherapeutic potential of platinum-based agents. Finally, we found that elevated CIC levels predict poor survival outcome in tumors hallmarked by high frequency of p53 mutations. Our results identify CIC as a novel target of mutp53 and imply that the employment of CIC inhibitors may improve survival rates and reduce chemo-resistance in tumors harboring these types of mutations, which are among the most intractable forms of cancers.
    Oncotarget 03/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Absence of dystrophin makes skeletal muscle more susceptible to injury, resulting in breaches of the plasma membrane and chronic inflammation in Duchenne muscular dystrophy (DMD). Current management by glucocorticoids has unclear molecular benefits and harsh side effects. It is uncertain whether therapies that avoid hormonal stunting of growth and development, and/or immunosuppression, would be more or less beneficial. Here, we discover an oral drug with mechanisms that provide efficacy through anti-inflammatory signaling and membrane-stabilizing pathways, independent of hormonal or immunosuppressive effects. We find VBP15 protects and promotes efficient repair of skeletal muscle cells upon laser injury, in opposition to prednisolone. Potent inhibition of NF-κB is mediated through protein interactions of the glucocorticoid receptor, however VBP15 shows significantly reduced hormonal receptor transcriptional activity. The translation of these drug mechanisms into DMD model mice improves muscle strength, live-imaging and pathology through both preventive and post-onset intervention regimens. These data demonstrate successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases.
    EMBO Molecular Medicine 10/2013; 5(10). DOI:10.1002/emmm.201302621 · 8.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metal-oxo clusters have been used as building blocks to form hybrid nanomaterials and evaluated as potential MRI contrast agents. We have synthesized a biocompatible co-polymer based on a water stable, non-toxic, mixed-metal oxo cluster, Mn8Fe4O12(O2CCH3)16(H2O)4 or Mn8Fe4 and styrene. The cluster alone was screened by NMR for relaxivity was found to be a promising T2 contrast agent, with r1 = 2.3 mM-1s-1 and r2 = 29.5 mM-1s-1. Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo. By exchanging the acetate for vinyl benzoic acid, the metal oxo-cluster Mn8Fe4(VBA)16 (VBA = vinyl benzoic acid), can be co-polymerized with styrene. Miniemulsion synthesis of this co-polymer was used to form paramagnetic nanobeads (~80 nm diameter), which were also evaluated as a contrast agent for MRI. These highly monodispersed, hybrid nanoparticles have enhanced properties, with the option for surface functionalization, making them a promising tool for biomedicine. Interestingly, both relaxivity measurements and MRI studies show that embedding the Mn8Fe4 core within a polymer matrix decreases r2 effects with little effect on r1, resulting in a positive T1 contrast enhancement.
    ACS Nano 09/2013; 7(10). DOI:10.1021/nn403647t · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent epidemiological evidences linking radiation exposure and a number of human ailments including cancer, mechanistic understanding of how radiation inflicts long-term changes in cerebral cortex, which regulates important neuronal functions, remains obscure. The current study dissects molecular events relevant to pathology in cerebral cortex of 6 to 8 weeks old female C57BL/6J mice two and twelve months after exposure to a γ radiation dose (2 Gy) commonly employed in fractionated radiotherapy. For a comparative study, effects of 1.6 Gy heavy ion56Fe radiation on cerebral cortex were also investigated, which has implications for space exploration. Radiation exposure was associated with increased chronic oxidative stress, oxidative DNA damage, lipid peroxidation, and apoptosis. These results when considered with decreased cortical thickness, activation of cell-cycle arrest pathway, and inhibition of DNA double strand break repair factors led us to conclude to our knowledge for the first time that radiation caused aging-like pathology in cerebral cortical cells and changes after heavy ion radiation were more pronounced than γ radiation.
    Aging 08/2013; 5(8). · 4.89 Impact Factor
  • Source
    Cell cycle (Georgetown, Tex.) 04/2013; 12(10). DOI:10.4161/cc.24855 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One fundamental feature of mutant forms of p53 consists in their accumulation at high levels in tumors. At least in the case of neomorphic p53 mutations, which acquire oncogenic activity, stabilization is a driving force for tumor progression. It is well documented that p53 mutants are resistant to proteasome-dependent degradation compared to wild-type p53, but the exact identity of the pathways that affect mutant p53 stability is still debated. We have recently shown that macroautophagy (autophagy) provides a route for p53 mutant degradation during restriction of glucose. Here we further show that in basal conditions of growth, inhibition of autophagy with chemical inhibitors or by downregulation of the essential autophagic genes ATG1/Ulk1, Beclin-1 or ATG5, results in p53 mutant stabilization. Conversely, overexpression of Beclin-1 or ATG1/Ulk1 leads to p53 mutant depletion. Furthermore, we found that in many cell lines, prolonged inhibition of the proteasome does not stabilize mutant p53 but leads to its autophagic-mediated degradation. Therefore, we conclude that autophagy is a key mechanism for regulating the stability of several p53 mutants. We discuss plausible mechanisms involved in this newly identified degradation pathway as well as the possible role played by autophagy during tumor evolution driven by mutant p53.
    Cell cycle (Georgetown, Tex.) 03/2013; 12(7). DOI:10.4161/cc.24128 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chagas disease, caused by Trypanosoma cruzi, is an important cause of morbidity and mortality primarily resulting from cardiac dysfunction, although T. cruzi infection results in inflammation and cell destruction in many organs. We found that T. cruzi (Brazil strain) infection of mice results in pancreatic inflammation and parasitism within pancreatic β-cells with apparent sparing of α cells and leads to the disruption of pancreatic islet architecture, β-cell dysfunction, and surprisingly, hypoglycemia. Blood glucose and insulin levels were reduced in infected mice during acute infection and insulin levels remained low into the chronic phase. In response to the hypoglycemia, glucagon levels 30 days postinfection were elevated, indicating normal α-cell function. Administration of L-arginine and a β-adrenergic receptor agonist (CL316, 243, respectively) resulted in a diminished insulin response during the acute and chronic phases. Insulin granules were docked, but the lack of insulin secretion suggested an inability of granules to fuse at the plasma membrane of pancreatic β-cells. In the liver, there was a concomitant reduced expression of glucose-6-phosphatase mRNA and glucose production from pyruvate (pyruvate tolerance test), demonstrating defective hepatic gluconeogenesis as a cause for the T. cruzi-induced hypoglycemia, despite reduced insulin, but elevated glucagon levels. The data establishes a complex, multi-tissue relationship between T. cruzi infection, Chagas disease, and host glucose homeostasis.
    American Journal Of Pathology 01/2013; 182(3). DOI:10.1016/j.ajpath.2012.11.027 · 4.60 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: This Guest Editorial introduces this month's special Imaging Theme Issue, a series of reviews that highlight the use of noninvasive imaging techniques for the advancement of small animal studies.
    American Journal Of Pathology 12/2012; 182(2). DOI:10.1016/j.ajpath.2012.11.015 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biologically accurate mouse models of human cancer have become important tools for the study of human disease. The anatomical location of various target organs, such as brain, pancreas, and prostate, makes determination of disease status difficult. Imaging modalities, such as magnetic resonance imaging, can greatly enhance diagnosis, and longitudinal imaging of tumor progression is an important source of experimental data. Even in models where the tumors arise in areas that permit visual determination of tumorigenesis, longitudinal anatomical and functional imaging can enhance the scope of studies by facilitating the assessment of biological alterations, (such as changes in angiogenesis, metabolism, cellular invasion) as well as tissue perfusion and diffusion. One of the challenges in preclinical imaging is the development of infrastructural platforms required for integrating in vivo imaging and therapeutic response data with ex vivo pathological and molecular data using a more systems-based multiscale modeling approach. Further challenges exist in integrating these data for computational modeling to better understand the pathobiology of cancer and to better affect its cure. We review the current applications of preclinical imaging and discuss the implications of applying functional imaging to visualize cancer progression and treatment. Finally, we provide new data from an ongoing preclinical drug study demonstrating how multiscale modeling can lead to a more comprehensive understanding of cancer biology and therapy.
    American Journal Of Pathology 12/2012; 182(2). DOI:10.1016/j.ajpath.2012.09.024 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of human tumors express mutant forms of p53 at high levels, promoting gain of oncogenic functions and correlating with disease progression, resistance to therapy and unfavorable prognosis. p53 mutant accumulation in tumors is attributed to the ability to evade degradation by the proteasome, the only currently recognized machinery for p53 disruption. We report here that glucose restriction (GR) induces p53 mutant deacetylation, routing it for degradation via autophagy. Depletion of p53 leads, in turn, to robust autophagic activation and to cell death, while expression of degradation-defective mutant p53 blocks autophagy and enables survival to GR. Furthermore, we found that a carbohydrate-free dietetic regimen that lowers the fasting glucose levels blunts p53 mutant expression and oncogenic activity relative to a normal diet in several animal model systems. These findings indicate that the stability of mutant forms of p53 is influenced by the levels of glucose and by dietetic habits. They also unravel the existence of an inhibitory loop between autophagy and mutant p53 that can be exploited therapeutically.
    Cell cycle (Georgetown, Tex.) 11/2012; 11(23). DOI:10.4161/cc.22778 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulation of the pathways that preserve mitochondrial integrity hallmarks many human diseases including diabetes, neurodegeration, aging and cancer. The mitochondrial citrate transporter gene, SLC25A1 or CIC, maps on chromosome 22q11.21, a region amplified in some tumors and deleted in developmental disorders known as velo-cardio-facial- and DiGeorge syndromes. We report here that in tumor cells CIC maintains mitochondrial integrity and bioenergetics, protects from mitochondrial damage and circumvents mitochondrial depletion via autophagy, hence promoting proliferation. CIC levels are increased in human cancers and its inhibition has anti-tumor activity, albeit with no toxicity on adult normal tissues. The knock-down of the CIC gene in zebrafish leads to mitochondria depletion and to proliferation defects that recapitulate features of human velo-cardio-facial syndrome, a phenotype rescued by blocking autophagy. Our findings reveal that CIC maintains mitochondrial homeostasis in metabolically active, high proliferating tissues and imply that this protein is a therapeutic target in cancer and likely, in other human diseases.
    Oncotarget 10/2012; 3(10). · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of new small molecule-based therapeutic drugs requires accurate quantification of drug bioavailability, biological activity and treatment efficacy. Rapidly measuring these endpoints is often hampered by the lack of efficient assay platforms with high sensitivity and specificity. Using an in vivo model system, we report a simple and sensitive liquid chromatography-tandem mass spectrometry assay to quantify the bioavailability of a recently developed novel cyclin-dependent kinase inhibitor VMY-1-103, a purvalanol B-based analog whose biological activity is enhanced via dansylation. We developed a rapid organic phase extraction technique and validated wide and functional VMY-1-103 distribution in various mouse tissues, consistent with its enhanced potency previously observed in a variety of human cancer cell lines. More importantly, in vivo MRI and single voxel proton MR-Spectroscopy further established that VMY-1-103 inhibited disease progression and affected key metabolites in a mouse model of hedgehog-driven medulloblastoma.
    Cell cycle (Georgetown, Tex.) 09/2012; 11(20):3801-9. DOI:10.4161/cc.21988 · 5.01 Impact Factor

Publication Stats

11k Citations
795.16 Total Impact Points


  • 2007–2015
    • Georgetown University
      • • Department of Oncology
      • • Lombardi Cancer Center
      Washington, Washington, D.C., United States
    • The Ohio State University
      Columbus, Ohio, United States
  • 2012
    • Federal University of Minas Gerais
      Cidade de Minas, Minas Gerais, Brazil
  • 2010
    • University of Texas Southwestern Medical Center
      • Touchstone Center for Diabetes
      Dallas, Texas, United States
  • 2009
    • Thomas Jefferson University
      • Kimmel Cancer Center
      Filadelfia, Pennsylvania, United States
  • 1997–2008
    • Albert Einstein College of Medicine
      • • Department of Pathology
      • • Albert Einstein Cancer Center
      • • Department of Medicine
      New York City, NY, United States
    • Yale University
      New Haven, Connecticut, United States
  • 2003–2006
    • Memorial Sloan-Kettering Cancer Center
      • Department of Medicine
      New York, New York, United States
  • 2004
    • University of Texas at Dallas
      Richardson, Texas, United States
    • Beth Israel Deaconess Medical Center
      • Division of Hematology/Oncology
      Boston, Massachusetts, United States
  • 2002
    • The University of Calgary
      • Department of Biochemistry and Molecular Biology
      Calgary, Alberta, Canada
  • 2001
    • Albert Einstein Medical Center
      Filadelfia, Pennsylvania, United States
    • University of California, San Francisco
      San Francisco, California, United States
  • 2000
    • McMaster University
      Hamilton, Ontario, Canada
  • 1999
    • University of Western Australia
      Perth City, Western Australia, Australia
  • 1997–1999
    • Harvard University
      • Department of Molecular and Cell Biology
      Cambridge, Massachusetts, United States
  • 1995–1999
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 1996
    • Boston Children's Hospital
      Boston, Massachusetts, United States