Chaim O Jacob

University of Southern California, Los Angeles, California, United States

Are you Chaim O Jacob?

Claim your profile

Publications (87)529.76 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by inflammation of multiple organ systems and dysregulated interferon responses. SLE is both genetically and phenotypically heterogeneous, greatly reducing the power of case-control studies in SLE. Elevated circulating interferon-alpha (IFN-alpha) is a stable, heritable trait in SLE, which has been implicated in primary disease pathogenesis. About 40-50% of patients have high IFN-alpha, and high levels correspond with clinical differences. To study genetic heterogeneity in SLE, we performed a case-case study comparing patients with high vs low IFN-alpha in over 1550 SLE cases, including genome-wide association study and replication cohorts. In meta-analysis, the top associations in European ancestry were protein kinase, cyclic GMP-dependent, type I (PRKG1) rs7897633 (PMeta=2.75 x 10-8) and purine nucleoside phosphorylase (PNP) rs1049564 (PMeta=1.24 x 10-7). We also found evidence for cross-ancestral background associations with the ankyrin repeat domain 44 (ANKRD44) and pleckstrin homology domain containing, family F member 2 gene (PLEKHF2) loci. These loci have not been previously identified in case-control SLE genetic studies. Bioinformatic analyses implicated these loci functionally in dendritic cells and natural killer cells, both of which are involved in IFN-alpha production in SLE. As case-control studies of heterogeneous diseases reach a limit of feasibility with respect to subject number and detectable effect size, the study of informative pathogenic sub-phenotypes becomes an attractive strategy for genetic discovery in complex disease.Genes and Immunity advance online publication, 23 October 2014; doi:10.1038/gene.2014.57.
    Genes and immunity. 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exploiting genotyping, DNA sequencing, imputation, and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE) we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3,230 IRF5-TNPO3 high quality, common variants across five ethnicities in 8,395 SLE cases and 7,367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (p-valuemeta=6x10(-49); OR=1.38-1.97). The second genetic effect spanned an 85.5 kb, 24 variant haplotype that included the genes IRF5 and TNPO3 (p-valuesEU=10(-27)-10(-32), OR=1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis while only the IRF5-TNPO3 gene-spanning haplotype is associated in primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3.
    Human Molecular Genetics 09/2014; · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association.
    Annals of the Rheumatic Diseases 09/2014; · 9.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lupus nephritis is a manifestation of SLE resulting from glomerular immune complex deposition and inflammation. Lupus nephritis demonstrates familial aggregation and accounts for significant morbidity and mortality. We completed a meta-analysis of three genome-wide association studies of SLE to identify lupus nephritis-predisposing loci. Through genotyping and imputation, >1.6 million markers were assessed in 2000 unrelated women of European descent with SLE (588 patients with lupus nephritis and 1412 patients with lupus without nephritis). Tests of association were computed using logistic regression adjusting for population substructure. The strongest evidence for association was observed outside the MHC and included markers localized to 4q11-q13 (PDGFRA, GSX2; P=4.5×10(-7)), 16p12 (SLC5A11; P=5.1×10(-7)), 6p22 (ID4; P=7.4×10(-7)), and 8q24.12 (HAS2, SNTB1; P=1.1×10(-6)). Both HLA-DR2 and HLA-DR3, two well established lupus susceptibility loci, showed evidence of association with lupus nephritis (P=0.06 and P=3.7×10(-5), respectively). Within the class I region, rs9263871 (C6orf15-HCG22) had the strongest evidence of association with lupus nephritis independent of HLA-DR2 and HLA-DR3 (P=8.5×10(-6)). Consistent with a functional role in lupus nephritis, intra-renal mRNA levels of PDGFRA and associated pathway members showed significant enrichment in patients with lupus nephritis (n=32) compared with controls (n=15). Results from this large-scale genome-wide investigation of lupus nephritis provide evidence of multiple biologically relevant lupus nephritis susceptibility loci.
    Journal of the American Society of Nephrology : JASN. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a genome-wide association study (GWAS) of individuals of European ancestry afflicted with systemic lupus erythematosus (SLE) the extensive utilization of imputation, step-wise multiple regression, lasso regularization and increasing study power by utilizing false discovery rate instead of a Bonferroni multiple test correction enabled us to identify 13 novel non-human leukocyte antigen (HLA) genes and confirmed the association of four genes previously reported to be associated. Novel genes associated with SLE susceptibility included two transcription factors (EHF and MED1), two components of the NF-κB pathway (RASSF2 and RNF114), one gene involved in adhesion and endothelial migration (CNTN6) and two genes involved in antigen presentation (BIN1 and SEC61G). In addition, the strongly significant association of multiple single-nucleotide polymorphisms (SNPs) in the HLA region was assigned to HLA alleles and serotypes and deconvoluted into four primary signals. The novel SLE-associated genes point to new directions for both the diagnosis and treatment of this debilitating autoimmune disease.Genes and Immunity advance online publication, 29 May 2014; doi:10.1038/gene.2014.23.
    Genes and immunity. 05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efforts to identify lupus-associated causal variants in the FAM167A/BLK locus on 8p21 are hampered by highly associated noncausal variants. In this report, we used a trans-population mapping and sequencing strategy to identify a common variant (rs922483) in the proximal BLK promoter and a tri-allelic variant (rs1382568) in the upstream alternative BLK promoter as putative causal variants for association with systemic lupus erythematosus. The risk allele (T) at rs922483 reduced proximal promoter activity and modulated alternative promoter usage. Allelic differences at rs1382568 resulted in altered promoter activity in B progenitor cell lines. Thus, our results demonstrated that both lupus-associated functional variants contribute to the autoimmune disease association by modulating transcription of BLK in B cells and thus potentially altering immune responses.
    The American Journal of Human Genetics 04/2014; 94(4):586-98. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10(-8), OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
    PLoS Genetics 10/2013; 9(10):e1003870. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetic factors underlying the pathogenesis of lupus nephritis associated with systemic lupus erythematosus are largely unknown, although animal studies indicate that nuclear factor (NF)-κB is involved. We reported previously that a knockin mouse expressing an inactive form of ABIN1 (ABIN1[D485N]) develops lupus-like autoimmune disease and demonstrates enhanced activation of NF-κB and mitogen-activated protein kinases in immune cells after toll-like receptor stimulation. In the current study, we show that ABIN1[D485N] mice develop progressive GN similar to class III and IV lupus nephritis in humans. To investigate the clinical relevance of ABIN1 dysfunction, we genotyped five single-nucleotide polymorphisms in the gene encoding ABIN1, TNIP1, in samples from European-American, African American, Asian, Gullah, and Hispanic participants in the Large Lupus Association Study 2. Comparing cases of systemic lupus erythematosus with nephritis and cases of systemic lupus erythematosus without nephritis revealed strong associations with lupus nephritis at rs7708392 in European Americans and rs4958881 in African Americans. Comparing cases of systemic lupus erythematosus with nephritis and healthy controls revealed a stronger association at rs7708392 in European Americans but not at rs4958881 in African Americans. Our data suggest that variants in the TNIP1 gene are associated with the risk for lupus nephritis and could be mechanistically involved in disease development via aberrant regulation of NF-κB and mitogen-activated protein kinase activity.
    Journal of the American Society of Nephrology 08/2013; · 8.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10(-34) , OR = 1.43[1.26-1.60]) and rs1234317-T (P = 1.16×10(-28) , OR = 1.38[1.24-1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5' region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5' risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait.
    PLoS Genetics 07/2013; 9(7):e1003554. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: Little is known about the genetic etiology of systemic lupus erythematosus (SLE) in individuals of African ancestry, despite its higher prevalence and greater disease severity. Overproduction of nitric oxide (NO) and reactive oxygen species are implicated in the pathogenesis and severity of SLE, making NO synthases and other reactive intermediate-related genes biological candidates for disease susceptibility. We analyzed variation in reactive intermediate genes for association with SLE in 2 populations with African ancestry. METHODS: A total of 244 single-nucleotide polymorphisms (SNP) from 53 regions were analyzed in non-Gullah African Americans (AA; 1432 cases and 1687 controls) and the genetically more homogeneous Gullah of the Sea Islands of South Carolina (133 cases and 112 controls). Single-marker, haplotype, and 2-locus interaction tests were computed for these populations. RESULTS: The glutathione reductase gene GSR (rs2253409; p = 0.0014, OR 1.26, 95% CI 1.09-1.44) was the most significant single SNP association in AA. In the Gullah, the NADH dehydrogenase NDUFS4 (rs381575; p = 0.0065, OR 2.10, 95% CI 1.23-3.59) and NO synthase gene NOS1 (rs561712; p = 0.0072, OR 0.62, 95% CI 0.44-0.88) were most strongly associated with SLE. When both populations were analyzed together, GSR remained the most significant effect (rs2253409; p = 0.00072, OR 1.26, 95% CI 1.10-1.44). Haplotype and 2-locus interaction analyses also uncovered different loci in each population. CONCLUSION: These results suggest distinct patterns of association with SLE in African-derived populations; specific loci may be more strongly associated within select population groups.
    The Journal of Rheumatology 05/2013; · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with a strong genetic component. African-Americans (AA) are at increased risk of SLE, but the genetic basis of this risk is largely unknown. To identify causal variants in SLE loci in AA, we performed admixture mapping followed by fine mapping in AA and European-Americans (EA). Through genome-wide admixture mapping in AA, we identified a strong SLE susceptibility locus at 2q22-24 (LOD = 6.28), and the admixture signal is associated with the European ancestry (ancestry risk ratio ∼1.5). Large-scale genotypic analysis on 19,726 individuals of African and European ancestry revealed three independently associated variants in the IFIH1 gene: an intronic variant, rs13023380 [P(meta) = 5.20×10(-14); odds ratio, 95% confidence interval = 0.82 (0.78-0.87)], and two missense variants, rs1990760 (Ala946Thr) [P(meta) = 3.08×10(-7); 0.88 (0.84-0.93)] and rs10930046 (Arg460His) [P(dom) = 1.16×10(-8); 0.70 (0.62-0.79)]. Both missense variants produced dramatic phenotypic changes in apoptosis and inflammation-related gene expression. We experimentally validated function of the intronic SNP by DNA electrophoresis, protein identification, and in vitro protein binding assays. DNA carrying the intronic risk allele rs13023380 showed reduced binding efficiency to a cellular protein complex including nucleolin and lupus autoantigen Ku70/80, and showed reduced transcriptional activity in vivo. Thus, in SLE patients, genetic susceptibility could create a biochemical imbalance that dysregulates nucleolin, Ku70/80, or other nucleic acid regulatory proteins. This could promote antibody hypermutation and auto-antibody generation, further destabilizing the cellular network. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.
    PLoS Genetics 02/2013; 9(2):e1003222. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that the G allele of rs3853839 at 3'untranslated region (UTR) of Toll-like receptor 7 () was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [ = 6.5×10, odds ratio (OR) (95%CI) = 1.27 (1.17-1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the region exhibiting consistent and independent association with SLE ( = 7.5×10, OR = 1.24 [1.18-1.34]). The risk G allele was associated with significantly increased levels of mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. 3'UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate expression. Indeed, miR-3148 levels were inversely correlated with transcript levels in PBMCs from SLE patients and controls (R = 0.255, = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by 3'UTR segment bearing the C allele ( = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries ( = 2.0×10, OR = 1.25 [1.20-1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor miR-3148.
    PLoS Genetics 02/2013; 9(2):e1003336. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: To determine the necessity for any individual BAFF receptor in the development of SLE. METHODS: Bcma, Taci, and Br3 null mutations were introgressed into NZM 2328 mice. NZM.Bcma(-/-) , NZM.Taci(-/-) , and NZM.Br3(-/-) mice were evaluated for lymphocyte phenotype and BAFF receptor expression by flow cytometry, B cell responsiveness to BAFF by in vitro culture, serum BAFF and total IgG and IgG anti-dsDNA levels by ELISA, renal immunopathology by immunofluorescence and histopathology, and clinical disease. RESULTS: NZM.Bcma(-/-) , NZM.Taci(-/-) , and NZM.Br3(-/-) mice failed to surface-express BCMA, TACI, and BR3, respectively. Transitional and follicular B cells from NZM.Br3(-/-) mice were much less responsive to BAFF than the corresponding cells from wild-type (WT), NZM.Bcma(-/-) , or NZM.Taci(-/-) mice. In comparison to WT mice, NZM.Bcma(-/-) and NZM.Taci(-/-) mice harbored increased spleen B cells, T cells, and plasma cells (PC), whereas serum total IgG and IgG anti-dsDNA levels were similar. Despite their paucity of B cells, NZM.Br3(-/-) mice harbored increased T cells and WT-like numbers of PC and levels of IgG anti-dsDNA. Serum BAFF levels were increased in NZM.Taci(-/-) and NZM.Br3(-/-) mice but were decreased in NZM.Bcma(-/-) mice. Despite their phenotypic differences, renal immunopathology and clinical disease in NZM.Bcma(-/-) , NZM.Taci(-/-) , and NZM.Br3(-/-) mice were at least as severe as in WT mice. CONCLUSIONS: Any single BAFF receptor, including BR3, is dispensable to development of SLE in NZM mice. Development of disease in NZM.Br3(-/-) mice demonstrates that BAFF/BCMA and/or BAFF/TACI interactions contribute to SLE and that profound, life-long reduction in B cells does not guarantee protection from SLE.
    Arthritis & Rheumatology 01/2013; · 7.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7x10(-9), OR = 1.40 (95% CI = 1.25-1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67-0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7x10(-5), OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.
    PLoS ONE 01/2013; 8(8):e69404. · 3.53 Impact Factor
  • Arthritis Research & Therapy 09/2012; 14(3). · 4.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: The Xq28 region containing IRAK1 and MECP2 has been identified as a risk locus for systemic lupus erythematosus (SLE) in previous genetic association studies. However, due to the strong linkage disequilibrium between IRAK1 and MECP2, it remains unclear which gene is affected by the underlying causal variant(s) conferring risk of SLE. METHODS: We fine-mapped ≥136 SNPs in a ∼227 kb region on Xq28, containing IRAK1, MECP2 and seven adjacent genes (L1CAM, AVPR2, ARHGAP4, NAA10, RENBP, HCFC1 and TMEM187), for association with SLE in 15 783 case-control subjects derived from four different ancestral groups. RESULTS: Multiple SNPs showed strong association with SLE in European Americans, Asians and Hispanics at p<5×10(-8) with consistent association in subjects with African ancestry. Of these, six SNPs located in the TMEM187-IRAK1-MECP2 region captured the underlying causal variant(s) residing in a common risk haplotype shared by all four ancestral groups. Among them, rs1059702 best explained the Xq28 association signals in conditional testings and exhibited the strongest p value in transancestral meta-analysis (p(meta )= 1.3×10(-27), OR=1.43), and thus was considered to be the most likely causal variant. The risk allele of rs1059702 results in the amino acid substitution S196F in IRAK1 and had previously been shown to increase NF-κB activity in vitro. We also found that the homozygous risk genotype of rs1059702 was associated with lower mRNA levels of MECP2, but not IRAK1, in SLE patients (p=0.0012) and healthy controls (p=0.0064). CONCLUSIONS: These data suggest contributions of both IRAK1 and MECP2 to SLE susceptibility.
    Annals of the rheumatic diseases 08/2012; · 8.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: Amerindian-Europeans, Asians and African-Americans have an excess morbidity from SLE and higher prevalence of lupus nephritis than Caucasians. The aim of this study was to analyze the relationship between genetic ancestry and socio-demographic characteristics and clinical features in a large cohort of Amerindian-European SLE patients. METHODS: A total of 2116 SLE patients of Amerindian-European origin and 4001 SLE patients of European descent with clinical data were used in the study. Genotyping of 253 continental ancestry informative markers was performed on the Illumina platform. The STRUCTURE and ADMIXTURE software were used to determine genetic ancestry of each individual. Correlation between ancestry and socio-demographic and clinical data were analyzed using logistic regression. RESULTS: The average Amerindian genetic ancestry of 2116 SLE patients was 40.7%. There was an increased risk of having renal involvement (P<0.0001, OR= 3.50 95%CI 2.63-4.63) and an early age of onset with the presence of Amerindian genetic ancestry (P<0.0001). Amerindian ancestry protected against photosensitivity (P<0.0001, OR= 0.58 95%CI 0.44-0.76), oral ulcers (P<0.0001, OR= 0.55 95%CI 0.42-0.72), and serositis (P<0.0001, OR= 0.56 95%CI 0.41-0.75) after adjustment by age, gender and age of onset. However, gender and age of onset had stronger effects on malar rash, discoid rash, arthritis and neurological involvement than genetic ancestry. CONCLUSION: In general, genetic Amerindian ancestry correlates with lower socio-demographic status and increases the risk for developing renal involvement and SLE at an earlier age of onset.
    Arthritis & Rheumatology 08/2012; · 7.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE.: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and altered type I interferon expression. Genetic surveys and genome-wide association studies have identified more than 30 SLE susceptibility genes. One of these genes, TNIP1, encodes the ABIN1 protein. ABIN1 functions in the immune system by restricting the NF-κB signaling. In order to better understand the genetic factors that influence association with SLE in genes that regulate the NF-κB pathway, we analyzed a dense set of genetic markers spanning TNIP1 and TAX1BP1, as well as the TNIP1 homolog, TNIP2, in case-control sets of diverse ethnic origins. METHODS.: We fine-mapped TNIP1, TNIP2, and TAX1BP1 in a total of 8372 SLE cases and 7492 healthy controls from European-ancestry, African-American, Hispanic, East Asian, and African-American Gullah populations. Levels of TNIP1 mRNA and ABIN1 protein were analyzed using quantitative RT-PCR and Western blotting, respectively, in EBV-transformed human B cell lines. RESULTS.: We found significant associations between genetic variants within TNIP1 and SLE but not in TNIP2 or TAX1BP1. After resequencing and imputation, we identified two independent risk haplotypes within TNIP1 in individuals of European-ancestry that were also present in African-American and Hispanic populations. These risk haplotypes produced lower levels of TNIP1 mRNA and ABIN1 protein suggesting they harbor hypomorphic functional variants that influence susceptibility to SLE by restricting ABIN1 expression. CONCLUSION.: Our results confirmed the association signals between SLE and TNIP1 variants in multiple populations and provide new insight into the mechanism by which TNIP1 variants may contribute to SLE pathogenesis.
    Arthritis & Rheumatology 07/2012; · 7.48 Impact Factor
  • Noam Jacob, Chaim O Jacob
    [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatoid arthritis (RA) is the most common rheumatic disease. The genetic basis of RA is supported through the identification of more than 30 susceptibility genetic variants. Each of these genes individually makes only a slight contribution to the risk of disease. Moreover, there is significant disparity in the genetic variants associated with different RA subgroups and patient ethnicities, which emphasizes the intricate nature of the disease's pathogenesis, and the complexities involved in large-scale genetic studies. This review evaluates critically the recent literature on the genetic contribution to RA and assesses the methodology used to identify these risk alleles.
    Rheumatic diseases clinics of North America 05/2012; 38(2):243-57. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin α(M) (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM. METHODS: The authors examined several markers in the ICAM1-ICAM4-ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case-control study of 17 481 unrelated participants from four ancestry populations. The single-marker association and gene-gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed. RESULTS: The A-allele of ICAM1-ICAM4-ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (OR(meta)=1.16, 95% CI 1.11 to 1.22; p=4.88×10(-10) and OR(meta)=1.67, 95% CI 1.55 to 1.79; p=3.32×10(-46), respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10(-5)). CONCLUSION: These findings are the first to suggest that an ICAM-integrin-mediated pathway contributes to susceptibility to SLE.
    Annals of the rheumatic diseases 04/2012; 71(11):1809-1814. · 8.11 Impact Factor

Publication Stats

3k Citations
529.76 Total Impact Points

Institutions

  • 1994–2014
    • University of Southern California
      • • Department of Medicine
      • • Division of Gastrointestinal and Liver Diseases
      • • Division of Rheumatology
      Los Angeles, California, United States
  • 1994–2013
    • University of California, Los Angeles
      • • Division of Rheumatology
      • • Department of Medicine
      Los Angeles, CA, United States
  • 2011
    • Oklahoma Medical Research Foundation
      • Arthritis and Clinical Immunology Program
      Oklahoma City, OK, United States
  • 2009
    • University of Oklahoma Health Sciences Center
      • College of Medicine
      Oklahoma City, Oklahoma, United States
    • University of Alabama at Birmingham
      Birmingham, Alabama, United States
  • 2008
    • University of California, Riverside
      • Department of Cell Biology and Neuroscience
      Riverside, CA, United States
  • 2007
    • Children's Hospital Los Angeles
      Los Angeles, California, United States
  • 2003
    • University of Cincinnati
      • Department of Internal Medicine
      Cincinnati, OH, United States
  • 2002
    • Weill Cornell Medical College
      • Division of Hospital Medicine
      New York City, New York, United States
  • 1992–1997
    • Otsuka America Pharmaceutical
      Princeton, New Jersey, United States