C H Hsieh

National Yang Ming University, T’ai-pei, Taipei, Taiwan

Are you C H Hsieh?

Claim your profile

Publications (2)2.36 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to develop an automated synthesis of 9-(4-[(18)F]-fluoro-3-hydroxymethylbutyl)guanine ([(18)F]FHBG) and 9-[(3-[(18)F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([(18)F]FHPG) using a Scanditronix Anatech RB III robotic system. [(18)F]HF was produced via (18)O(p, n)(18)F using a Scanditronix MC17F cyclotron. On average, a typical run produced [(18)F]FHBG and [(18)F]FHPG with an uncorrected radiochemical yield of 19% and 16%, respectively, at end of synthesis (EOS) from irradiation of 95% enriched [(18)O]water. The total synthesis time was 80 min. The retention time of [(18)F]FHBG and [(18)F]FHPG (the radio-peak) was 3.9 and 4.0 min, respectively, which was consistent with the [(19)F]FHBG and [(19)F]FHPG ultraviolet peak. The radiochemical purity was greater than 97%. A robotic, automated method for [(18)F]FHBG and [(18)F]FHPG radiosynthesis is therefore feasible. The radiation burden for the operator can be reduced as much as possible. Sufficient radioactivities of [(18)F]FHBG and [(18)F]FHPG could be obtained for non-invasive monitoring the expression of transfected gene in vivo with positron emission tomography (PET).
    Applied Radiation and Isotopes 02/2007; 65(1):57-63. · 1.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A simple model has been developed for predicting radiobiological effectiveness of the neutron capture reaction in boron neutron capture therapy. This model was derived from the relationship between the cell survival from the boron capture reaction, the intracellular boron concentration, and the thermal neutron fluence. We found that the cell-killing effect of the boron capture reaction was well described using a power function of the intracellular boron concentration. Hence the relationship between cell survival from the boron capture reaction, intracellular boron concentration, and the thermal neutron fluence could be determined using a simple mathematical equation. We consider that our current approach is more appropriate and realistic than the conventional theoretical mathematical model used to estimate the radiobiological effectiveness of the neutron capture reaction in boron neutron capture therapy.
    Applied Radiation and Isotopes 04/2006; 64(3):306-14. · 1.18 Impact Factor