C Julier

Paris Diderot University, Lutetia Parisorum, Île-de-France, France

Are you C Julier?

Claim your profile

Publications (126)1183.06 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a new syndrome of young onset diabetes, short stature and microcephaly with intellectual disability in a large consanguineous family with three affected children. Linkage analysis and whole exome sequencing were used to identify the causal nonsense mutation, which changed an arginine codon into a stop at position 127 of the tRNA methyltransferase homolog gene TRMT10A (also called RG9MTD2). TRMT10A mRNA and protein were absent in lymphoblasts from the affected siblings. TRMT10A is ubiquitously expressed but enriched in brain and pancreatic islets, consistent with the tissues affected in this syndrome. In situ hybridization studies showed that TRMT10A is expressed in human embryonic and fetal brain. TRMT10A is the mammalian ortholog of S. cerevisiae TRM10, previously shown to catalyze the methylation of guanine 9 (m(1)G9) in several tRNAs. Consistent with this putative function, in silico topology prediction indicated that TRMT10A has predominant nuclear localization, which we experimentally confirmed by immunofluorescence and confocal microscopy. TRMT10A localizes to the nucleolus of β- and non-β-cells, where tRNA modifications occur. TRMT10A silencing induces rat and human β-cell apoptosis. Taken together, we propose that TRMT10A deficiency negatively affects β-cell mass and the pool of neurons in the developing brain. This is the first study describing the impact of TRMT10A deficiency in mammals, highlighting a role in the pathogenesis of microcephaly and early onset diabetes. In light of the recent report that the type 2 diabetes candidate gene CDKAL1 is a tRNA methylthiotransferase, the findings in this family suggest broader relevance of tRNA methyltransferases in the pathogenesis of type 2 diabetes.
    PLoS Genetics 10/2013; 9(10):e1003888. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-dependent juvenile-onset diabetes may occur in the context of rare syndromic presentations suggesting monogenic inheritance rather than common multifactorial autoimmune type 1 diabetes. Here, we report the case of a Lebanese patient diagnosed with juvenile-onset insulin-dependent diabetes presenting ketoacidosis, early-onset retinopathy with optic atrophy, hearing loss, diabetes insipidus, epilepsy, and normal weight and stature, who later developed insulin resistance. Despite similarities with Wolfram syndrome, we excluded the WFS1 gene as responsible for this disease. Using combined linkage and candidate gene study, we selected ALMS1, responsible for Alström syndrome, as a candidate gene. We identified a novel splice mutation in intron 18 located 3 bp before the intron-exon junction (IVS18-3T>G), resulting in exon 19 skipping and consequent frameshift generating a truncated protein (V3958fs3964X). The clinical presentation of the patient significantly differed from typical Alström syndrome by the absence of truncal obesity and short stature, and by the presence of ketoacidotic insulin-dependent diabetes, optic atrophy and diabetes insipidus. Our observation broadens the clinical spectrum of Alström syndrome and suggests that ALMS1 mutations may be considered in patients who initially present with an acute onset of insulin-dependent diabetes.European Journal of Human Genetics advance online publication, 8 May 2013; doi:10.1038/ejhg.2013.87.
    European journal of human genetics: EJHG 05/2013; · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in human Gli-similar (GLIS) 3 protein cause neonatal diabetes. The GLIS3 gene region has also been identified as a susceptibility risk locus for both type 1 and type 2 diabetes. GLIS3 plays a role in the generation of pancreatic beta cells and in insulin gene expression, but there is no information on the role of this gene on beta cell viability and/or susceptibility to immune- and metabolic-induced stress. GLIS3 knockdown (KD) in INS-1E cells, primary FACS-purified rat beta cells, and human islet cells decreased expression of MafA, Ins2, and Glut2 and inhibited glucose oxidation and insulin secretion, confirming the role of this transcription factor for the beta cell differentiated phenotype. GLIS3 KD increased beta cell apoptosis basally and sensitized the cells to death induced by pro-inflammatory cytokines (interleukin 1β + interferon-γ) or palmitate, agents that may contribute to beta cell loss in respectively type 1 and 2 diabetes. The increased cell death was due to activation of the intrinsic (mitochondrial) pathway of apoptosis, as indicated by cytochrome c release to the cytosol, Bax translocation to the mitochondria and activation of caspases 9 and 3. Analysis of the pathways implicated in beta cell apoptosis following GLIS3 KD indicated modulation of alternative splicing of the pro-apoptotic BH3-only protein Bim, favouring expression of the pro-death variant BimS via inhibition of the splicing factor SRp55. KD of Bim abrogated the pro-apoptotic effect of GLIS3 loss of function alone or in combination with cytokines or palmitate. The present data suggest that altered expression of the candidate gene GLIS3 may contribute to both type 1 and 2 type diabetes by favouring beta cell apoptosis. This is mediated by alternative splicing of the pro-apoptotic protein Bim and exacerbated formation of the most pro-apoptotic variant BimS.
    PLoS Genetics 05/2013; 9(5):e1003532. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: Atypical forms of diabetes may be caused by monogenic mutations in key genes controlling beta-cell development, survival and function. This report describes an insulin-dependent diabetes patient with a syndromic presentation in whom a homozygous SLC29A3 mutation was identified. METHODS: SLC29A3 was selected as the candidate gene based on the patient's clinical manifestations, and all exons and flanking regions in the patient's genomic DNA were sequenced. RESULTS: A homozygous splice mutation (c.300+1G>C) resulting in a frameshift and truncated protein (p.N101LfsX34) was identified. The patient had insulin-dependent diabetes, congenital deafness, short stature, hyperpigmented patches on the skin, dysmorphic features, cardiomegaly, arthrogryposis, hepatosplenomegaly, anaemia with erythroblastopenia, and an inflammatory syndrome with fever and arthritis; she also presented with a fibrotic mediastinal mass. These clinical features overlapped with pigmented hypertrichosis with insulin-dependent diabetes (PHID), H syndrome, Faisalabad histiocytosis and sinus histiocytosis with massive lymphadenopathy (SHML), all of which are also caused by SLC29A3 mutations. CONCLUSION: This is the most severe case reported of SLC29A3 mutations with cumulative features of all these syndromes. This extreme severity coincides with the most N-terminal location of the truncation mutation, thereby affecting all alternative transcripts of the gene. This case report extends the clinical variability of homozygous SLC29A3 mutations that result in a spectrum of multisystemic manifestations.
    Diabetes & Metabolism 04/2013; · 2.39 Impact Factor
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The common genetic loci that independently influence the risk of type 1 diabetes have largely been determined. Their interactions with age-at-diagnosis of type 1 diabetes, sex, or the major susceptibility locus, HLA class II, remain mostly unexplored. A large collection of more than 14,866 type 1 diabetes samples (6,750 British diabetic individuals and 8,116 affected family samples of European descent) were genotyped at 38 confirmed type 1 diabetes-associated non-HLA regions and used to test for interaction of association with age-at-diagnosis, sex, and HLA class II genotypes using regression models. The alleles that confer susceptibility to type 1 diabetes at interleukin-2 (IL-2), IL2/4q27 (rs2069763) and renalase, FAD-dependent amine oxidase (RNLS)/10q23.31 (rs10509540), were associated with a lower age-at-diagnosis (P = 4.6 × 10(-6) and 2.5 × 10(-5), respectively). For both loci, individuals carrying the susceptible homozygous genotype were, on average, 7.2 months younger at diagnosis than those carrying the protective homozygous genotypes. In addition to protein tyrosine phosphatase nonreceptor type 22 (PTPN22), evidence of statistical interaction between HLA class II genotypes and rs3087243 at cytotoxic T-lymphocyte antigen 4 (CTLA4)/2q33.2 was obtained (P = 7.90 × 10(-5)). No evidence of differential risk by sex was obtained at any loci (P ≥ 0.01). Statistical interaction effects can be detected in type 1 diabetes although they provide a relatively small contribution to our understanding of the familial clustering of the disease.
    Diabetes 08/2012; 61(11):3012-7. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over 50 regions of the genome have been associated with type 1 diabetes risk, mainly using large case/control collections. In a recent genome-wide association (GWA) study, 18 novel susceptibility loci were identified and replicated, including replication evidence from 2,319 families. Here, we, the Type 1 Diabetes Genetics Consortium (T1DGC), aimed to exclude the possibility that any of the 18 loci were false-positives due to population stratification by significantly increasing the statistical power of our family study. We genotyped the most disease-predicting single-nucleotide polymorphisms at the 18 susceptibility loci in 3,108 families and used existing genotype data for 2,319 families from the original study, providing 7,013 parent-child trios for analysis. We tested for association using the transmission disequilibrium test. Seventeen of the 18 susceptibility loci reached nominal levels of significance (p < 0.05) in the expanded family collection, with 14q24.1 just falling short (p = 0.055). When we allowed for multiple testing, ten of the 17 nominally significant loci reached the required level of significance (p < 2.8 × 10(-3)). All susceptibility loci had consistent direction of effects with the original study. The results for the novel GWA study-identified loci are genuine and not due to population stratification. The next step, namely correlation of the most disease-associated genotypes with phenotypes, such as RNA and protein expression analyses for the candidate genes within or near each of the susceptibility regions, can now proceed.
    Diabetologia 04/2012; 55(4):996-1000. · 6.49 Impact Factor
  • Source
    Nature Genetics 12/2011; 44(1):3-5. · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interactions between genetic and environmental factors lead to immune dysregulation causing type 1 diabetes and other autoimmune disorders. Recently, many common genetic variants have been associated with type 1 diabetes risk, but each has modest individual effects. Familial clustering of type 1 diabetes has not been explained fully and could arise from many factors, including undetected genetic variation and gene interactions. To address this issue, the Type 1 Diabetes Genetics Consortium recruited 3,892 families, including 4,422 affected sib-pairs. After genotyping 6,090 markers, linkage analyses of these families were performed, using a novel method and taking into account factors such as genotype at known susceptibility loci. Evidence for linkage was robust at the HLA and INS loci, with logarithm of odds (LOD) scores of 398.6 and 5.5, respectively. There was suggestive support for five other loci. Stratification by other risk factors (including HLA and age at diagnosis) identified one convincing region on chromosome 6q14 showing linkage in male subjects (corrected LOD = 4.49; replication P = 0.0002), a locus on chromosome 19q in HLA identical siblings (replication P = 0.006), and four other suggestive loci. This is the largest linkage study reported for any disease. Our data indicate there are no major type 1 diabetes subtypes definable by linkage analyses; susceptibility is caused by actions of HLA and an apparently random selection from a large number of modest-effect loci; and apart from HLA and INS, there is no important susceptibility factor discoverable by linkage methods.
    Diabetes 01/2011; 60(3):1030-40. · 7.90 Impact Factor
  • Source
    Cécile Julier, Marc Nicolino
    [Show abstract] [Hide abstract]
    ABSTRACT: Wolcott-Rallison syndrome (WRS) is a rare autosomal recessive disease, characterized by neonatal/early-onset non-autoimmune insulin-requiring diabetes associated with skeletal dysplasia and growth retardation. Fewer than 60 cases have been described in the literature, although WRS is now recognised as the most frequent cause of neonatal/early-onset diabetes in patients with consanguineous parents. Typically, diabetes occurs before six months of age, and skeletal dysplasia is diagnosed within the first year or two of life. Other manifestations vary between patients in their nature and severity and include frequent episodes of acute liver failure, renal dysfunction, exocrine pancreas insufficiency, intellectual deficit, hypothyroidism, neutropenia and recurrent infections. Bone fractures may be frequent. WRS is caused by mutations in the gene encoding eukaryotic translation initiation factor 2α kinase 3 (EIF2AK3), also known as PKR-like endoplasmic reticulum kinase (PERK). PERK is an endoplasmic reticulum (ER) transmembrane protein, which plays a key role in translation control during the unfolded protein response. ER dysfunction is central to the disease processes. The disease variability appears to be independent of the nature of the EIF2AK3 mutations, with the possible exception of an older age at onset; other factors may include other genes, exposure to environmental factors and disease management. WRS should be suspected in any infant who presents with permanent neonatal diabetes associated with skeletal dysplasia and/or episodes of acute liver failure. Molecular genetic testing confirms the diagnosis. Early diagnosis is recommended, in order to ensure rapid intervention for episodes of hepatic failure, which is the most life threatening complication. WRS should be differentiated from other forms of neonatal/early-onset insulin-dependent diabetes based on clinical presentation and genetic testing. Genetic counselling and antenatal diagnosis is recommended for parents of a WRS patient with confirmed EIF2AK3 mutation. Close therapeutic monitoring of diabetes and treatment with an insulin pump are recommended because of the risk of acute episodes of hypoglycaemia and ketoacidosis. Interventions under general anaesthesia increase the risk of acute aggravation, because of the toxicity of anaesthetics, and should be avoided. Prognosis is poor and most patients die at a young age. Intervention strategies targeting ER dysfunction provide hope for future therapy and prevention.
    Orphanet Journal of Rare Diseases 11/2010; 5:29. · 4.32 Impact Factor
  • Source
    Diabetes 07/2010; 59(7):1561-71. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wolcott-Rallison syndrome (WRS) is a rare autosomal recessive disorder characterized by an early-infancy-onset diabetes mellitus associated with a variety of multisystemic clinical manifestations. Here, we present six patients with WRS, carrying the same homozygous mutation (EIF2AK3-W522X), from two unrelated Turkish families. This is the largest series of patients with the same mutation for this rare syndrome. In this communication we compare clinical features of these six patients with the other 34 patients who have been reported to date, and review the clinical features of WRS. All WRS patients presented first with symptoms of insulin dependent diabetes mellitus, with a mean age at onset of 2 months. All patients had skeletal dysplasia or early signs of it, and growth retardation. Many of the patients with WRS have been reported to have developmental delay, mental retardation, and learning difficulties; in contrast, none of our patients showed abnormal development at age up to 30 months. Acute attacks of hepatic failure were reported in 23 cases out of 37 patients; in 15 of those 23 cases an acute attack of renal failure accompanied the liver failure. Exocrine pancreatic deficiency has been reported in only four cases other than our four patients. Central hypothyroidism was observed in six of 28 cases. We propose that central hypothyroidism is not a component of WRS, but rather a reflection of euthyroid sick syndrome. Four of our patients experienced severe neutropenia, compared to only five of the 27 other cases, suggesting that the W522X mutation may be specifically associated with neutropenia. Other than the consistent features of diabetes mellitus and epiphyseal dysplasia, WRS patients are otherwise characterized by extensive phenotypic variability that correlates poorly to genotype.
    Pediatric Diabetes 02/2010; 11(4):279-85. · 2.08 Impact Factor
  • Source
    Clinical Trials 01/2010; 7(1 Suppl):S5-S32. · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of its efforts to identify genes affecting the risk of type I diabetes (T1D), the Type I Diabetes Genetics Consortium commissioned an extensive survey of variants associated with genes reported earlier to have an association with disease susceptibility. In this report, we present the analysis of a set of single-nucleotide polymorphisms (SNPs) within and flanking the IL12B gene, which encodes the p40 subunit of the cytokines interleukin (IL)-12 and IL-23. No SNP showed individually significant association in the population as a whole. Nevertheless, subjects stratified according to genotype at the earlier reported SNP in the IL12B 3'UTR, rs3212227, confirmed small, but significant, differences in age of disease onset with a relative hazard=0.88 (P=0.005). The protective effect of rs3212227 allele 2 was gender specific (P=0.004 overall and P=0.0003 when unaffected siblings were considered). Among females, the 2.2 genotype was more protective, with relative hazard=0.75. We conclude that while there was no major effect of IL12B polymorphisms on T1D susceptibility in the entire study group, they have an impact on a subset of at-risk individuals.
    Genes and immunity 12/2009; 10 Suppl 1:S64-8. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candidate gene studies have long been the principal method for identification of susceptibility genes for type I diabetes (T1D), resulting in the discovery of HLA, INS, PTPN22, CTLA4, and IL2RA. However, many of the initial studies that relied on this strategy were largely underpowered, because of the limitations in genomic information and genotyping technology, as well as the limited size of available cohorts. The Type I Diabetes Genetic Consortium (T1DGC) has established resources to re-evaluate earlier reported genes associated with T1D, using its collection of 2298 Caucasian affected sib-pair families (with 11 159 individuals). A total of 382 single-nucleotide polymorphisms (SNPs) located in 21 T1D candidate genes were selected for this study and genotyped in duplicate on two platforms, Illumina and Sequenom. The genes were chosen based on published literature as having been either 'confirmed' (replicated) or not (candidates). This study showed several important features of genetic association studies. First, it showed the major impact of small rates of genotyping errors on association statistics. Second, it confirmed associations at INS, PTPN22, IL2RA, IFIH1 (earlier confirmed genes), and CTLA4 (earlier confirmed, with distinct SNPs) loci. Third, it did not find evidence for an association with T1D at SUMO4, despite confirmed association in Asian populations, suggesting the potential for population-specific gene effects. Fourth, at PTPN22, there was evidence for a novel contribution to T1D risk, independent of the replicated effect of the R620W variant. Fifth, among the candidate genes selected for replication, the association of TCF7-P19T with T1D was newly replicated in this study. In summary, this study was able to replicate some genetic effects, reject others, and provide suggestions of association with several of the other candidate genes in stratified analyses (age at onset, HLA status, population of origin). These results have generated additional interesting functional hypotheses that will require further replication in independent cohorts.
    Genes and immunity 12/2009; 10 Suppl 1:S121-7. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Type I Diabetes Genetics Consortium (T1DGC) is an international collaboration whose primary goal is to identify genes whose variants modify an individual's risk of type I diabetes (T1D). An integral part of the T1DGC's mission is the establishment of clinical and data resources that can be used by, and that are fully accessible to, the T1D research community (http://www.t1dgc.org). The T1DGC has organized the collection and analyses of study samples and conducted several major research projects focused on T1D gene discovery: a genome-wide linkage scan, an intensive evaluation of the human major histocompatibility complex, a detailed examination of published candidate genes, and a genome-wide association scan. These studies have provided important information to the scientific community regarding the function of specific genes or chromosomal regions on T1D risk. The results are continually being updated and displayed (http://www.t1dbase.org). The T1DGC welcomes all investigators interested in using these data for scientific endeavors on T1D. The T1DGC resources provide a framework for future research projects, including examination of structural variation, re-sequencing of candidate regions in a search for T1D-associated genes and causal variants, correlation of T1D risk genotypes with biomarkers obtained from T1DGC serum and plasma samples, and in-depth bioinformatics analyses.
    Genes and immunity 12/2009; 10 Suppl 1:S128-31. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is the third major locus affecting risk of type I diabetes (T1D), after HLA-DR/DQ and INS. The most associated single-nucleotide polymorphism (SNP), rs2476601, has a C->T variant and results in an arginine (R) to tryptophan (W) amino acid change at position 620. To assess whether this, or other specific variants, are responsible for T1D risk, the Type I Diabetes Genetics Consortium analyzed 28 PTPN22 SNPs in 2295 affected sib-pair (ASP) families. Transmission Disequilibrium Test analyses of haplotypes revealed that all three haplotypes with a T allele at rs2476601 were overtransmitted to affected children, and two of these three haplotypes showed statistically significant overtransmission (P=0.003 to P=5.9E-12). Another haplotype had decreased transmission to affected children (P=3.5E-05). All haplotypes containing the rs2476601 T allele were identical for all SNPs across PTPN22 and only varied at centromeric SNPs. When considering rs2476601 'C' founder chromosomes, a second haplotype (AGGGGC) centromeric of PTPN22 in the C1orf178 region was associated with protection from T1D (odds ratio=0.81, P=0.0005). This novel finding requires replication in independent populations. We conclude the major association of PTPN22 with T1D is likely due to the recognized non-synonymous SNP rs2476601 (R620W).
    Genes and immunity 12/2009; 10 Suppl 1:S21-6. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Type I Diabetes Genetics Consortium (T1DGC) has collected thousands of multiplex and simplex families with type I diabetes (T1D) with the goal of identifying genes involved in T1D susceptibility. These families have been genotyped for the HLA class I and class II loci and, recently, for a genome-wide panel of single-nucleotide polymorphisms (SNPs). In addition, multiple SNPs in specific candidate genes have been genotyped in these families in an attempt to evaluate previously reported T1D associations, including the C883A (Pro-Thr) polymorphism in exon 2 of TCF7, a T-cell transcription factor. The TCF7 883A allele was associated with T1D in subjects with T1D not carrying the high-risk HLA genotype DR3/DR4. A panel of 11 SNPs in TCF7 was genotyped in 2092 families from 9 cohorts of the T1DGC. SNPs at two positions in TCF7 were associated with T1D. One associated SNP, C883A (rs5742913), was reported earlier to have a T1D association. A second SNP, rs17653687, represents a novel T1D susceptibility allele in TCF7. After stratification on the high T1D risk DR3/DR4 genotype, the variant (A) allele of C883A was significantly associated with T1D among non-DR3/DR4 cases (transmission=55.8%, P=0.004; OR=1.26) but was not significantly associated in the DR3/DR4 patient subgroup, replicating the earlier report. The reference A allele of intronic SNP rs17653687 was modestly associated with T1D in both DR3/DR4 strata (transmission=54.4% in DR3/DR4; P=0.03; transmission=52.9% in non-DR3/DR4; P=0.03). These results support the previously reported association of the non-synonymous Pro-Thr SNP in TCF7 with T1D, and suggest that other alleles at this locus may also confer risk.
    Genes and immunity 12/2009; 10 Suppl 1:S54-9. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Type I Diabetes Genetics Consortium (T1DGC) is an international, multicenter research program with two primary goals. The first goal is to identify genomic regions and candidate genes whose variants modify an individual's risk of type I diabetes (T1D) and help explain the clustering of the disease in families. The second goal is to make research data available to the research community and to establish resources that can be used by, and that are fully accessible to, the research community. To facilitate the access to these resources, the T1DGC has developed a Consortium Agreement (http://www.t1dgc.org) that specifies the rights and responsibilities of investigators who participate in Consortium activities. The T1DGC has assembled a resource of affected sib-pair families, parent-child trios, and case-control collections with banks of DNA, serum, plasma, and EBV-transformed cell lines. In addition, both candidate gene and genome-wide (linkage and association) studies have been performed and displayed in T1DBase (http://www.t1dbase.org) for all researchers to use in their own investigations. In this supplement, a subset of the T1DGC collection has been used to investigate earlier published candidate genes for T1D, to confirm the results from a genome-wide association scan for T1D, and to determine associations with candidate genes for other autoimmune diseases or with type II diabetes that may be involved with beta-cell function.
    Genes and immunity 12/2009; 10 Suppl 1:S1-4. · 4.22 Impact Factor

Publication Stats

8k Citations
1,183.06 Total Impact Points

Institutions

  • 2013
    • Paris Diderot University
      Lutetia Parisorum, Île-de-France, France
  • 2009–2012
    • University of Cambridge
      • Department of Medical Genetics
      Cambridge, ENG, United Kingdom
    • CHU de Lyon - Hôpital Femme-Mère-Enfant
      Lyons, Rhône-Alpes, France
    • Roche
      • Department of Human Genetics
      Basel, BS, Switzerland
  • 2000–2012
    • Centre National de Génotypage
      Évry-Petit-Bourg, Île-de-France, France
  • 2011
    • University of Western Australia
      • Centre for Diabetes Research
      Perth, Western Australia, Australia
  • 1988–2010
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France
  • 2008–2009
    • University of Virginia
      • Department of Biochemistry, Molecular Biology and Genetics
      Charlottesville, VA, United States
    • Lebanese American University
      • School of Medicine
      Beirut, Mohafazat Beyrouth, Lebanon
  • 2000–2009
    • Institut Pasteur
      Lutetia Parisorum, Île-de-France, France
  • 2005
    • Benaroya Research Institute
      Seattle, Washington, United States
  • 1996–2001
    • University of Oxford
      • Wellcome Trust Centre for Human Genetics
      Oxford, England, United Kingdom
    • Wellcome Trust
      Londinium, England, United Kingdom
  • 1998
    • Teikyo University Hospital
      Edo, Tōkyō, Japan
  • 1995
    • Hôpital Universitaire Robert Debré
      Lutetia Parisorum, Île-de-France, France
  • 1993
    • The Association of Professors of Human and Medical Genetics
      Council Bluffs, Iowa, United States
    • The Institute for Molecular Medicine
      Huntington Beach, California, United States
  • 1990
    • Oxford University Hospitals NHS Trust
      • Department of Paediatrics
      Oxford, ENG, United Kingdom
  • 1988–1990
    • Howard Hughes Medical Institute
      Maryland, United States