Are you Albert S Baldwin?

Claim your profile

Publications (2)18.09 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional silencing via promoter methylation of genes important for cell growth and differentiation plays a key role in myeloid leukemogenesis. We find that clinically achievable levels of 5-aza-2'-deoxycytidine (5-AZA-dC), a potent inhibitor of DNA methylation, can modify chromatin and restore the ability of tumor necrosis factor alpha (TNFalpha) to induce monocytic differentiation of the acute myeloid leukemia cells NB4 and U937. Although 5-AZA-dC cannot fully induce differentiation, we show that 5-AZA-dC acts directly on TNFalpha-responsive promoters to facilitate TNFalpha-induced transcriptional pathways leading to differentiation. 5-AZA-dC regulates the expression of Dif-2, a TNFalpha target gene, by deacetylating chromatin domains in a methylation-dependent manner. Chromatin immunoprecipitation analyses of the Dif-2 promoter show histone hyperacetylation and a recruitment of the nuclear factor-kappaB transcription factor in response to 5-AZA-dC. Furthermore, 5-AZA-dC plus TNFalpha enhances the level of phosphorylated RNA Pol II at the Dif-2 promoter via synergistic recruitment of TFIIH. We conclude that nonspecific changes in chromatin can allow a specific transcriptional inducer to overcome blocks in leukemic cell differentiation. Our results support the concept of low doses of 5-AZA-dC acting in combination with other agents to target epigenetic changes that drive malignant growth in leukemic cells. [Cancer Res 2009;69(1):55-64].
    Cancer Research 02/2009; 69(1):55-64. · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional activation by nuclear hormone receptors is well characterized, but their cooperation with other signaling pathways to activate transcription remains poorly understood. Tumor necrosis factor alpha (TNFalpha) and all-trans retinoic acid (RA) induce monocytic differentiation of acute promyelocytic leukemia (APL) cells in a synergistic manner. We used the promoter of DIF2, a gene involved in monocytic differentiation, to model the mechanism underlying the cooperative induction of target genes by RA and TNFalpha. We show a functional RA response element in the DIF2 promoter, which is constitutively bound by PML/RARalpha in APL cells. RA stimulates release of corepressors and recruitment of chromatin modifying proteins and additional transcription factors to the promoter, but these changes cause only a modest induction of DIF2 mRNA. Co-stimulation with RA plus TNFalpha facilitates binding of NF-kappaB to the promoter, which is crucial for full induction of transcription. Furthermore, RA plus TNFalpha greatly enhanced the level of RNA Pol II phosphorylation on the DIF2 promoter, via synergistic recruitment of TFIIH. We propose that RA mediates remodeling of chromatin to facilitate binding of transcription factors, which cooperate to enhance Pol II phosphorylation, providing a mechanism whereby nuclear receptors interact with other signaling pathways on the level of transcription.
    Nucleic Acids Research 03/2008; 36(2):435-43. · 8.81 Impact Factor