A L Archibald

Uppsala University, Uppsala, Uppsala, Sweden

Are you A L Archibald?

Claim your profile

Publications (168)583.24 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Porcine Reproductive and Respiratory Syndrome (PRRS) is a disease of major economic impact worldwide. The etiologic agent of this disease is the PRRS virus (PRRSV). Increasing evidence suggest that microevolution within a coexisting quasispecies population can give rise to high sequence heterogeneity in PRRSV. We developed a pipeline based on the ultra-deep next generation sequencing approach to first construct the complete genome of a European PRRSV, strain Olot/9, cultured on macrophages and then capture the rare variants representative of the mixed quasispecies population. Olot/91 differs from the reference Lelystad strain by about 5% and a total of 88 variants, with frequencies as low as 1%, were detected in the mixed population. These variants included 16 non-synonymous variants concentrated in the genes encoding structural and nonstructural proteins; including Glycoprotein 2a and 5. Using an ultra-deep sequencing methodology, the complete genome of Olot/91 was constructed without any prior knowledge of the sequence. Rare variants that constitute minor fractions of the heterogeneous PRRSV population could successfully be detected to allow further exploration of microevolutionary events.
    Virology Journal 03/2014; 11(1):42. · 2.09 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Female reproductive performance traits in pigs have low heritabilities thus limiting improvement through traditional selective breeding programmes. However, there is substantial genetic variation found between pig breeds with the Chinese Meishan being one of the most prolific pig breeds known. In this study, three cohorts of Large White × Meishan F2 cross-bred pigs were analysed to identify quantitative trait loci (QTL) with effects on reproductive traits, including ovulation rate, teat number, litter size, total born alive and prenatal survival. A total of 307 individuals were genotyped for 174 genetic markers across the genome. The genome-wide analysis of the trait-recorded F2 gilts in their first parity/litter revealed one QTL for teat number significant at the genome level and a total of 12 QTL, which are significant at the chromosome-wide level, for: litter size (three QTL), total born alive (two QTL), ovulation rate (four QTL), prenatal survival (one QTL) and teat number (two QTL). Further support for eight of these QTL is provided by results from other studies. Four of these 12 QTL were mapped for the first time in this study: on SSC15 for ovulation rate and on SSC18 for teat number, ovulation rate and litter size.
    Animal Genetics 01/2014; · 2.58 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection.
    BMC Genomics 01/2014; 15(1):90. · 4.40 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Elucidating the process of speciation requires an in-depth understanding of the evolutionary history of the species in question. Studies that rely upon a limited number of genetic loci do not always reveal actual evolutionary history, and often confuse inferences related to phylogeny and speciation. Whole-genome data, however, can overcome this issue by providing a nearly unbiased window into the patterns and processes of speciation. In order to reveal the complexity of the speciation process, we sequenced and analyzed the genomes of 10 wild pigs, representing morphologically or geographically well-defined species and subspecies of the genus Sus from insular and mainland Southeast Asia, and one African common warthog. Our data highlight the importance of past cyclical climatic fluctuations in facilitating the dispersal and isolation of populations, thus leading to the diversification of suids in one of the most species-rich regions of the world. Moreover, admixture analyses revealed extensive, intra- and inter-specific gene-flow that explains previous conflicting results obtained from a limited number of loci. We show that these multiple episodes of gene-flow resulted from both natural and human-mediated dispersal. Our results demonstrate the importance of past climatic fluctuations and human mediated translocations in driving and complicating the process of speciation in island Southeast Asia. This case study demonstrates that genomics is a powerful tool to decipher the evolutionary history of a genus, and reveals the complexity of the process of speciation.
    Genome biology 09/2013; 14(9):R107. · 10.30 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The draft genome of the domestic pig (Sus scrofa) has recently been published permitting refined analysis of the transcriptome. Pig breeds have been reported to differ in their resistance to infectious disease. In this study we examine whether there are corresponding differences in gene expression in innate immune cells RESULTS: We demonstrate that macrophages can be harvested from three different compartments of the pig (lungs, blood and bone-marrow), cryopreserved and subsequently recovered and differentiated in CSF-1. We have performed surface marker analysis and gene expression profiling on macrophages from these compartments, comparing twenty-five animals from five different breeds and their response to lipopolysaccharide. The results provide a clear distinction between alveolar macrophages (AM) and monocyte-derived (MDM) and bone-marrow-derived macrophages (BMDM). In particular, the lung macrophages express the growth factor, FLT1 and its ligand, VEGFA at high levels, suggesting a distinct pathway of growth regulation. Relatively few genes showed breed-specific differential expression, notably CXCR2 and CD302 in alveolar macrophages. In contrast, there was substantial inter-individual variation between pigs within breeds, mostly affecting genes annotated as being involved in immune responses. Pig macrophages more closely resemble human, than mouse, in their set of macrophage-expressed and LPS-inducible genes. Future research will address whether inter-individual variation in macrophage gene expression is heritable, and might form the basis for selective breeding for disease resistance.
    BMC Genomics 08/2013; 14(1):581. · 4.40 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Background The process of speciation is fundamental to evolutionary biology but remains poorly understood. Confusion can arise because the conclusions of studies that rely upon a limited number of genetic loci may not reflect the true evolutionary history of the species. Whole-genome data, however, can overcome this issue by providing an unbiased window into the patterns and processes of speciation. In order to reveal the complexity of the speciation process, we sequenced and analysed the genomes of 10 wild pigs, representing five morphologically and/or geographically well-defined species of the genus Sus from insular and mainland Southeast Asia, and one African common warthog. Results Our data highlight the importance of past cyclical climatic fluctuations in facilitating the dispersal and isolation of populations, thus leading to the diversification of suids in one of the most species-rich regions of the world. Moreover, admixture analyses revealed extensive, intra- and inter-specific gene flow thus reconciling previous conflicting results obtained from a limited number of loci. We show that these multiple events of reticulation involved both natural and human mediated dispersal. Conclusions Our results demonstrate the importance of past climatic fluctuations and human mediated translocations in driving and reversing the speciation process in island Southeast Asia. This case study demonstrates that genomics is a powerful tool to decipher the evolutionary history of a genus, and reveals the complexity of the process of speciation.
    Genome Biology 08/2013; · 10.30 Impact Factor
  • Source
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. RESULTS: The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome. CONCLUSIONS: This extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig's adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response.
    BMC Genomics 05/2013; 14(1):332. · 4.40 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Human and mouse monocyte can be divided into two different subpopulations based on surface marker expression: CD14/16 and Ly6C/CX3CR1, respectively. Monocyte subpopulations in the pig were identified based on reciprocal expression of CD14 and the scavenger receptor CD163. The two populations, CD14(hi)-CD163(low) and CD14(low)-CD163(hi), show approximately equal abundance in the steady-state. Culture of pig PBMCs in CSF1 indicates that the two populations are a maturation series controlled by this growth factor. Gene expression in pig monocyte subpopulations was profiled using the newly developed and annotated pig whole genome snowball microarray. Previous studies have suggested a functional equivalence between human and mouse subsets, but certain genes such as CD36, CLEC4E, or TREM-1 showed human-specific expression. The same genes were expressed selectively in pig monocyte subsets. However, the profiles suggest that the pig CD14(low)-CD163(high) cells are actually equivalent to intermediate human monocytes, and there is no CD14(-) CD16(+) "nonclassical" population. The results are discussed in terms of the relevance of the pig as a model for understanding human monocyte function.
    The Journal of Immunology 05/2013; · 5.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Increased litter size and within-litter uniformity in birth weight would improve pig reproductive efficiency. This study compared the location and gene and protein expression of secreted phosphoprotein 1 in placental and uterine tissues supplying a normally-sized and the smallest fetus carried by Hyperprolific Large White and Meishan gilts on Days 41-42 of pregnancy. Immunohistochemistry and in situ hybridization showed that the protein and gene encoding secreted phosphoprotein 1 were located in the glandular and luminal epithelium of the endometrium and in the placenta. Secreted phosphoprotein 1 protein levels were higher in glandular epithelium, luminal epithelium and placenta from Meishan gilts compared to corresponding tissues from Hyperprolific Large White gilts. Reverse transcription quantitative PCR demonstrated secreted phosphoprotein 1 mRNA levels were higher in endometrium, but not placenta, from Meishan compared to Hyperprolific Large White gilts. In Hyperprolific Large White gilts secreted phosphoprotein 1 protein levels were higher in glandular epithelium and placenta surrounding small fetuses than corresponding tissues supplying normal-sized fetuses. Similarly, in Meishan gilts secreted phosphoprotein 1 protein levels were higher in luminal epithelium surrounding small compared to normal-sized fetuses. Within Hyperprolific Large White, but not Meishan, gilts secreted phosphoprotein 1 mRNA was higher in endometrium surrounding the normal-sized fetus than the control fetus. The contradictory relationship between fetal size and secreted phosphoprotein 1 protein and mRNA in the Hyperprolific Large White is intriguing and may reflect breed differences in post-translational modification. The striking breed differences in secreted phospoprotein 1 expression, suggest that SPP1 may be associated with placental efficiency.
    Biology of Reproduction 04/2013; · 4.03 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Following domestication, livestock breeds have experienced intense selection pressures for the development of desirable traits. This has resulted in a large diversity of breeds that display variation in many phenotypic traits, such as coat colour, muscle composition, early maturity, growth rate, body size, reproduction, and behaviour. To better understand the relationship between genomic composition and phenotypic diversity arising from breed development, the genomes of 13 traditional and commercial European pig breeds were scanned for signatures of diversifying selection using the Porcine60K SNP chip, applying a between-population (differentiation) approach. Signatures of diversifying selection between breeds were found in genomic regions associated with traits related to breed standard criteria, such as coat colour and ear morphology. Amino acid differences in the EDNRB gene appear to be associated with one of these signatures, and variation in the KITLG gene may be associated with another. Other selection signals were found in genomic regions including QTLs and genes associated with production traits such as reproduction, growth, and fat deposition. Some selection signatures were associated with regions showing evidence of introgression from Asian breeds. When the European breeds were compared with wild boar, genomic regions with high levels of differentiation harboured genes related to bone formation, growth, and fat deposition.
    PLoS Genetics 04/2013; 9(4):e1003453. · 8.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
    Nature 11/2012; 491(7424):393-398. · 38.60 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig-the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.
    Proceedings of the National Academy of Sciences 11/2012; · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Purpose/Objective: The laboratory mouse is an imperfect model in which to study human innate immunity. The larger size of the pig, and closer evolutionary distance to humans, offer several advantages. In particular, it is more straightforward to access large numbers of lung macrophages. In this study, we compared the gene expression profiles of macrophages from different breeds and compartments; alveolar (AM), bone-marrow-derived, monocyte subsets and monocyte-derived macrophages. Materials and methods: We isolated a large number of mononuclear cells from the lung, bone-marrow and blood of 25 pigs from five breeds. Phagocytosis, TNF production and the expression of macrophage markers were characterised. We used a newly-generated and annotated pig expression array to characterise gene expression and the response to lipopolysaccharide. Results: Isolated macrophage populations from pigs resemble those of humans. All type of macrophages expresses CD16, the LPS co-receptor CD14, CD172a. CD163 expression defined a subset of monocytes, and was expressed inversely with CD14. It was retained on alveolar macrophages (AM). Alveolar macrophages had a specific gene expression profile that included high levels of many C type lectins. Like peripheral blood monocytes, AM comprised two two subpopulations that differed in adherence, LPS response, phagocytosis and expression of CD163. CD14++ monocytes resembled CD14++ human monocytes in the expression profile. Human and pig macrophages also shared expression of LPS-inducible genes (STAT4, IDO, CCL20, Cyp27B1) that are not induced in mouse macrophages, and failed to induce iNOS. Pig breeds showed no great differences in response to LPS. The few genes differentially expressed included cytochrome CYP3A29, the metalloproteinase MMP1, STEAP4 and the N-Myc interactor NMI. Conclusions: We have isolated and characterised the gene expression profiles of pig macrophages in multiple differentiation and activation states. The data support the use of the pig as a model of innate immunity that more closely resembles humans, and is economically important in its own right.
    European Congress of Immunology, Glasgow, Scotland; 09/2012
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Although the functions of porcine respiratory and reproductive syndrome virus (PRRSV) proteins are increasingly understood, the roles of host factors in modifying infection are less well understood. Growing evidence places deubiquitination at the core of a multitude of regulatory processes, ranging from cell growth to innate immune response and health, such as cancer, degenerative and infectious diseases. This report provides further information on the functional role of the porcine ubiquitin-specific peptidase 18 (USP18) during innate immune responses to PRRSV. We have shown that constitutive overexpression of the porcine USP18 in MARC-145 cells restricts PRRSV growth, at least in part via early activation of NF-κB. Viral growth of PRRSV may be perturbed by increasing and decreasing nuclear translocation of p65 and p50, respectively. Our data highlight USP18 as a host restriction factor during innate immune response to PRRSV.
    Virus Research 07/2012; 169(1):264-7. · 2.75 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Helminths almost invariably have an over-dispersed distribution in the host population. Human and animal studies have provided evidence suggesting that a large part of this variation is due to host genetic factors. Recently, the heritability for roundworm (Ascaris suum) infection levels in pigs was estimated to be 0.45. We used single nucleotide polymorphism markers to perform a whole-genome scan on 195 pigs experimentally infected with A. suum. A putative quantitative trait locus for worm burden on chromosome 4 covering 2.5 Mbp was identified by measured genotype analysis, although none of the SNPs reached genome-wide significance. To validate the putative quantitative trait locus, we genotyped two of the SNPs within the region in unrelated, informative animals exposed to experimental or natural infections and from which we had worm counts and/or faecal egg counts; the validation studies showed that one of the SNPs (TXNIP) was associated with total worm burden (P < 0.001) and adult worm burden(P < 0.0001), whereas the other SNP (ARNT) was associated with adult worm burden (P < 0.025) in these populations. We were thus able to confirm the existence of the quantitative trait locus on chromosome 4.This is to our knowledge the first report of a quantitative trait locus associated with helminth burden in pigs.
    International journal for parasitology 04/2012; 42(4):383-91. · 3.39 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Mouse bone marrow-derived macrophages (BMDM) grown in M-CSF (CSF-1) have been used widely in studies of macrophage biology and the response to TLR agonists. We investigated whether similar cells could be derived from the domestic pig using human rCSF-1 and whether porcine macrophages might represent a better model of human macrophage biology. Cultivation of pig bone marrow cells for 5-7 d in presence of human rCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, and CD172a), were potent phagocytic cells, and produced TNF in response to LPS. Pig BMDM could be generated from bone marrow cells that had been stored frozen and thawed so that multiple experiments can be performed on samples from a single animal. Gene expression in pig BMDM from outbred animals responding to LPS was profiled using Affymetrix microarrays. The temporal cascade of inducible and repressible genes more closely resembled the known responses of human than mouse macrophages, sharing with humans the regulation of genes involved in tryptophan metabolism (IDO, KYN), lymphoattractant chemokines (CCL20, CXCL9, CXCL11, CXCL13), and the vitamin D3-converting enzyme, Cyp27B1. Conversely, in common with published studies of human macrophages, pig BMDM did not strongly induce genes involved in arginine metabolism, nor did they produce NO. These results establish pig BMDM as an alternative tractable model for the study of macrophage transcriptional control.
    The Journal of Immunology 03/2012; 188(7):3382-94. · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Distinct signaling pathways are reported to maintain pluripotency in embryo-derived stem cells. Mouse embryonic stem cells (ESCs) respond to leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP)-mediated activity, whereas human ESCs depend upon Fibroblast growth factor (FGF) and activin signaling. In the majority of mammals investigated, however, the signals that support stem cell pluripotency are not well defined, as is evident by the persistent difficulties in maintaining authentic stable ESC lines. Induction of pluripotency by transcription factor-mediated reprogramming could provide an alternative way to produce ESC-like cells from nonpermissive species, and facilitate identification of core ESC signaling requirements. To evaluate the effectiveness of this approach in pigs, we transduced porcine foetal fibroblasts with retroviruses expressing Oct4, Sox2, Klf4, and c-Myc, and maintained the resulting cultures in medium containing either LIF or FGF2. Alkaline phosphatase positive colonies with compact, mouse ESC-like morphology were preferentially recovered using serum-free medium supplemented with LIF. These cell lines expressed the endogenous stem cell transcription factors, OCT4, NANOG, and SOX2, and the cell surface marker SSEA-4, consistent with acquisition of an undifferentiated state. However, restricted differentiation potential, and persistent expression of retroviral transgenes indicated that reprogramming was incomplete. Interestingly, LIF activated both the transcription factor STAT3 and its target gene SOCS3, and stimulated cell growth, indicating functional coupling of the signaling pathway in these cells. This demonstration of LIF-dependence in reprogrammed pig cells supports the notion that the connection between LIF/STAT3 signaling and the core regulatory network of pluripotent stem cells is a conserved pathway in mammals.
    Cellular reprogramming. 02/2012; 14(2):112-22.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The availability of a high-density SNP genotyping chip and a reference genome sequence of the pig (Sus scrofa) enabled the construction of a high-density linkage map. A high-density linkage map is an essential tool for further fine-mapping of quantitative trait loci (QTL) for a variety of traits in the pig and for a better understanding of mechanisms underlying genome evolution. Four different pig pedigrees were genotyped using the Illumina PorcineSNP60 BeadChip. Recombination maps for the autosomes were computed for each individual pedigree using a common set of markers. The resulting genetic maps comprised 38,599 SNPs, including 928 SNPs not positioned on a chromosome in the current assembly of the pig genome (build 10.2). The total genetic length varied according to the pedigree, from 1797 to 2149 cM. Female maps were longer than male maps, with a notable exception for SSC1 where male maps are characterized by a higher recombination rate than females in the region between 91-250 Mb. The recombination rates varied among chromosomes and along individual chromosomes, regions with high recombination rates tending to cluster close to the chromosome ends, irrespective of the position of the centromere. Correlations between main sequence features and recombination rates were investigated and significant correlations were obtained for all the studied motifs. Regions characterized by high recombination rates were enriched for specific GC-rich sequence motifs as compared to low recombinant regions. These correlations were higher in females than in males, and females were found to be more recombinant than males at regions where the GC content was greater than 0.4. The analysis of the recombination rate along the pig genome highlighted that the regions exhibiting higher levels of recombination tend to cluster around the ends of the chromosomes irrespective of the location of the centromere. Major sex-differences in recombination were observed: females had a higher recombination rate within GC-rich regions and exhibited a stronger correlation between recombination rates and specific sequence features.
    BMC Genomics 01/2012; 13:586. · 4.40 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: The application of DNA markers for the identification of biological samples from both human and non-human species is widespread and includes use in food authentication. In the food industry the financial incentive to substituting the true name of a food product with a higher value alternative is driving food fraud. This applies to British pork products where products derived from traditional pig breeds are of premium value. The objective of this study was to develop a genetic assay for regulatory authentication of traditional pig breed-labelled products in the porcine food industry in the United Kingdom. RESULTS: The dataset comprised of a comprehensive coverage of breed types present in Britain: 460 individuals from 7 traditional breeds, 5 commercial purebreds, 1 imported European breed and 1 imported Asian breed were genotyped using the PorcineSNP60 beadchip. Following breed-informative SNP selection, assignment power was calculated for increasing SNP panel size. A 96-plex assay created using the most informative SNPs revealed remarkably high genetic differentiation between the British pig breeds, with an average FST of 0.54 and Bayesian clustering analysis also indicated that they were distinct homogenous populations. The posterior probability of assignment of any individual of a presumed origin actually originating from that breed given an alternative breed origin was > 99.5% in 174 out of 182 contrasts, at a test value of log(LR) > 0. Validation of the 96-plex assay using independent test samples of known origin was successful; a subsequent survey of market samples revealed a high level of breed label conformity. CONCLUSION: The newly created 96-plex assay using selected markers from the PorcineSNP60 beadchip enables powerful assignment of samples to traditional breed origin and can effectively identify mislabelling, providing a highly effective tool for DNA analysis in food forensics.
    BMC Genomics 01/2012; 13(1):580. · 4.40 Impact Factor

Publication Stats

3k Citations
583.24 Total Impact Points

Institutions

  • 2003–2012
    • Uppsala University
      • Department of Medical Biochemistry and Microbiology
      Uppsala, Uppsala, Sweden
  • 1999–2011
    • The University of Edinburgh
      • • Roslin Institute
      • • Royal (Dick) School of Veterinary Studies
      • • MRC Centre for Inflammation Research
      Edinburgh, SCT, United Kingdom
  • 1993–2010
    • The Roslin Institute
      Edinburgh, Scotland, United Kingdom
    • Royal Agricultural University
      Gloucester, England, United Kingdom
  • 2008
    • Università degli Studi del Molise
      Campobasso, Molise, Italy
  • 2007
    • Biotechnology and Biological Sciences Research Council
      Swindon, England, United Kingdom
  • 2001–2003
    • University of Guelph
      • Centre for Genetic Improvement of Livestock
      Guelph, Ontario, Canada
  • 2002
    • Swedish University of Agricultural Sciences
      • Institutionen för husdjursgenetik
      Uppsala, Uppsala, Sweden
  • 2000
    • University of Zaragoza
      • Faculty of Veterinary
      Zaragoza, Aragon, Spain