A J Smith

University of Sussex, Brighton, England, United Kingdom

Are you A J Smith?

Claim your profile

Publications (65)380.44 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the poor spatial resolution of Herschel. We present 870um 0.45" imaging obtained in Cycle 0 with the Atacama Large Millimeter/submillimeter Array (ALMA) of a sample of 29 HerMES DSFGs. The ALMA imaging reveals that these DSFGs comprise a total of 62 sources (down to the 5-sigma limit in our ALMA sample; sigma~0.2 mJy). Optical imaging indicates that 36 of the ALMA sources experience a significant flux boost from gravitational lensing (mu>1.1), but only 6 are strongly lensed and show multiple images. We introduce and make use of uvmcmcfit, a general purpose and publicly available Markov chain Monte Carlo visibility plane analysis tool to analyze the source properties. Combined with our previous work on brighter Herschel sources, the lens models presented here tentatively favor intrinsic number counts for DSFGs with a break near 8 mJy at 880um and a steep fall off at higher flux densities. Nearly 70% of the Herschel sources break down into multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sources discovered in single-dish sub-mm or FIR surveys. The ALMA counterparts to our Herschel targets are located significantly closer to each other than ALMA counterparts to sources found in the LABOCA ECDFS Submillimeter Survey. Theoretical models underpredict the excess number of sources with small separations seen in our ALMA sample. The high multiplicity rate and low projected separations between sources seen in our sample argue in favor of interactions and mergers plausibly driving both the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880 = 8 mJy.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The potential for Planck to detect clusters of dusty, star-forming galaxies at z > 1 is tested by examining the Herschel-SPIRE images of Planck Early Release Compact Source Catalog sources lying in fields observed by the Herschel Multitiered Extragalactic Survey. Of the 16 Planck sources that lie in the ̃90 sq. deg. examined, we find that 12 are associated with single bright Herschel sources. The remaining four are associated with overdensities of Herschel sources, making them candidate clusters of dusty, star-forming galaxies. We use complementary optical/near-IR data for these `clumps' to test this idea, and find evidence for the presence of galaxy clusters in all four cases. We use photometric redshifts and red sequence galaxies to estimate the redshifts of these clusters, finding that they range from 0.8 to 2.3. These redshifts imply that the Herschel sources in these clusters, which contribute to the detected Planck flux, are forming stars very rapidly, with typical total cluster star formation rates >1000 M☉ yr-1. The high-redshift clusters discovered in these observations are used to constrain the epoch of cluster galaxy formation, finding that the galaxies in our clusters are 1-1.5 Gyr old at z ̃ 1-2. Prospects for the discovery of further clusters of dusty galaxies are discussed, using not only all sky Planck surveys, but also deeper, smaller area, Herschel surveys.
    Monthly Notices of the Royal Astronomical Society 01/2014; 439(2). DOI:10.1093/mnras/stt2253 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of the infrared properties for a sample of seven spectroscopically confirmed submillimeter galaxies at $z>$4.0. By combining ground-based near-infrared, Spitzer IRAC and MIPS, Herschel SPIRE, and ground-based submillimeter/millimeter photometry, we construct their Spectral Energy Distributions (SED) and a composite model to fit the SEDs. The model includes a stellar emission component at $\lambda_{\rm rest} <$ 3.5$ \mu$m; a hot dust component peaking at $\lambda_{rest} \sim$ 5$\,\mu$m; and cold dust component which becomes significant for $\lambda_{\rm rest} >$ 50$\,\mu$m. Six objects in the sample are detected at 250 and 350$ \mu$m. The dust temperatures for the sources in this sample are in the range of 40$-$80 K, and their $L_{\rm FIR}$ $\sim$ 10$^{13}$ L$_{\odot}$ qualifies them as Hyper$-$Luminous Infrared Galaxies (HyperLIRGs). The mean FIR-radio index for this sample is around $< q > = 2.2$ indicating no radio excess in their radio emission. Most sources in the sample have 24$ \mu$m detections corresponding to a rest-frame 4.5$ \mu$m luminosity of Log$_{10}$(L$_{4.5}$ / L$_{\odot}$) = 11 $\sim$ 11.5. Their L$_{\rm 4.5}$/$L_{\rm FIR}$ ratios are very similar to those of starburst dominated submillimeter galaxies at $z \sim$ 2. The $L_{\rm CO}-L_{\rm FIR}$ relation for this sample is consistent with that determined for local ULIRGs and SMGs at $z \sim$ 2. We conclude that submillimeter galaxies at $z >$ 4 are hotter and more luminous in the FIR, but otherwise very similar to those at $z \sim$ 2. None of these sources show any sign of the strong QSO phase being triggered.
    The Astrophysical Journal 01/2014; 784(1). DOI:10.1088/0004-637X/784/1/52 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the far-infrared properties of 498 Lyman Alpha Emitters (LAEs) at z=2.8, 3.1 and 4.5 in the Extended Chandra Deep Field-South, using 250, 350 and 500 micron data from the Herschel Multi-tiered Extragalactic Survey (HerMES) and 870 micron data from the LABOCA ECDFS Submillimeter Survey (LESS). None of the 126, 280 or 92 LAEs at z=2.8, 3.1 and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching $1\sigma$ depths of ~0.1 to 0.4 mJy. The LAEs are also undetected at $\ge3\sigma$ in the stacks, although a $2.5\sigma$ signal is observed at 870 micron for the z=2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including a M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star-formation rates of the LAEs. These star-formation rates are then combined with those inferred from the Ly$\alpha$ and UV emission to determine lower limits on the LAEs Ly$\alpha$ escape fraction ($f_{\rm esc}($Ly$\alpha$)). For the Sd SED template, the inferred LAEs $f_{\rm esc}($Ly$\alpha$) are $\gtrsim30%$ ($1\sigma$) at z=2.8, 3.1 and 4.5, which are all significantly higher than the global $f_{\rm esc}($Ly$\alpha$) at these redshifts. Thus, if the LAEs $f_{\rm esc}($Ly$\alpha$) follows the global evolution then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE $f_{\rm esc}($Ly$\alpha$) of ~10 to 20% ($1\sigma$), all of which are slightly higher than the global evolution of $f_{\rm esc}($Ly$\alpha$) but consistent with it at the 2 to 3$\sigma$ level.
    The Astrophysical Journal 12/2013; 787(1). DOI:10.1088/0004-637X/787/1/9 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Herschel Multi-tiered Extragalactic Survey (HerMES) is the largest Guaranteed Time Key Programme on the Herschel Space Observatory. With a wedding cake survey strategy, it consists of nested fields with varying depth and area totalling ∼380 deg2. In this paper, we present deep point source catalogues extracted from Herschel-Spectral and Photometric Imaging Receiver (SPIRE) observations of all HerMES fields, except for the later addition of the 270 deg2 HerMES Large-Mode Survey (HeLMS) field. These catalogues constitute the second Data Release (DR2) made in 2013 October. A sub-set of these catalogues, which consists of bright sources extracted from Herschel-SPIRE observations completed by 2010 May 1 (covering ∼74 deg2) were released earlier in the first extensive data release in 2012 March. Two different methods are used to generate the point source catalogues, the sussextractor point source extractor used in two earlier data releases (EDR and EDR2) and a new source detection and photometry method. The latter combines an iterative source detection algorithm, starfinder, and a De-blended SPIRE Photometry algorithm. We use end-to-end Herschel-SPIRE simulations with realistic number counts and clustering properties to characterize basic properties of the point source catalogues, such as the completeness, reliability, photometric and positional accuracy. Over 500 000 catalogue entries in HerMES fields (except HeLMS) are released to the public through the HeDAM (Herschel Database in Marseille) website (http://hedam.lam.fr/HerMES).
    Monthly Notices of the Royal Astronomical Society 12/2013; 444(3). DOI:10.1093/mnras/stu1569 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The potential for Planck to detect clusters of dusty, star-forming galaxies at z greater than 1 is tested by examining the Herschel-SPIRE images of Planck Early Release Compact Source Catalog (ERCSC) sources lying in fields observed by the HerMES survey. Of the 16 Planck sources that lie in the roughly 90 sq. deg. examined, we find that twelve are associated with single bright Herschel sources. The remaining four are associated with overdensities of Herschel sources, making them candidate clusters of dusty, starforming galaxies. We use complementary optical and NIR data for these clumps to test this idea, and find evidence for the presence of galaxy clusters in all four cases. We use photometric redshifts and red sequence galaxies to estimate the redshifts of these clusters, finding that they range from 0.8 to 2.3. These redshifts imply that the Herschel sources in these clusters, which contribute to the detected Planck flux, are forming stars very rapidly, with typical total cluster star formation rates greater than 1000Msun per yr. The high redshift clusters discovered in these observations are used to constrain the epoch of cluster galaxy formation, finding that the galaxies in our clusters are 1 to 1.5 Gy old at z about 1 to 2. Prospects for the discovery of further clusters of dusty galaxies are discussed, using not only all sky Planck surveys, but also deeper, smaller area, Herschel surveys.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a method for selecting $z>4$ dusty, star forming galaxies (DSFGs) using Herschel/SPIRE 250/350/500 $\mu m$ flux densities to search for red sources. We apply this method to 21 deg$^2$ of data from the HerMES survey to produce a catalog of 38 high-$z$ candidates. Follow-up of the first 5 of these sources confirms that this method is efficient at selecting high-$z$ DSFGs, with 4/5 at $z=4.3$ to $6.3$ (and the remaining source at $z=3.4$), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 $\mu m$) and in single-band surveys, shows that our method is much more efficient at selecting high-$z$ DSFGs, in the sense that a much larger fraction are at $z>3$. Correcting for the selection completeness and purity, we find that the number of bright ($S_{500\,\mu m} \ge 30$ mJy), red Herschel sources is $3.3 \pm 0.8$ deg$^{-2}$. This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-$z$ DSFGs is similar to that at $z\sim2$, rest-frame UV based studies may be missing a significant component of the star formation density at $z=4$ to $6$, even after correction for extinction.
    The Astrophysical Journal 10/2013; 780(1). DOI:10.1088/0004-637X/780/1/75 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strong gravitational lenses are now being routinely discovered in wide-field surveys at (sub)millimeter wavelengths. We present Submillimeter Array (SMA) high-spatial resolution imaging and Gemini-South and Multiple Mirror Telescope optical spectroscopy of strong lens candidates discovered in the two widest extragalactic surveys conducted by the Herschel Space Observatory: the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). From a sample of 30 Herschel sources with S_500>100 mJy, 21 are strongly lensed (multiply imaged), 4 are moderately lensed (singly imaged), and the remainder require additional data to determine their lensing status. We apply a visibility-plane lens modeling technique to the SMA data to recover information about the masses of the lenses as well as the intrinsic (i.e., unlensed) sizes (r_half) and far-infrared luminosities (L_FIR) of the lensed submillimeter galaxies (SMGs). The sample of lenses comprises primarily isolated massive galaxies, but includes some groups and clusters as well. Several of the lenses are located at z_lens>0.7, a redshift regime that is inaccessible to lens searches based on Sloan Digital Sky Survey spectroscopy. The lensed SMGs are amplified by factors that are significantly below statistical model predictions given the 500um flux densities of our sample. We speculate that this may reflect a deficiency in our understanding of the intrinsic sizes and luminosities of the brightest SMGs. The lensed SMGs span nearly one decade in L_FIR (median L_FIR=7.9x10^12 L_sun) and two decades in FIR luminosity surface density (median Sigma_FIR=6.0x10^11 L_sun kpc^-2). The strong lenses in this sample and others identified via (sub-)mm surveys will provide a wealth of information regarding the astrophysics of galaxy formation and evolution over a wide range in redshift.
    The Astrophysical Journal 09/2013; 779(1). DOI:10.1088/0004-637X/779/1/25 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the far-infrared (FIR; rest-frame 8--1000\mu m) properties of a sample of 443 H\alpha-selected star-forming galaxies in the COSMOS and UDS fields detected by the HiZELS imaging survey. Sources are identified using narrow-band filters in combination with broad-band photometry to uniformly select H\alpha\ (and [OII] if available) emitters in a narrow redshift slice at z = 1.47+/-0.02. We use a stacking approach in Spitzer, Herschel (from PEP and HerMES surveys) and AzTEC images to describe their typical FIR properties. We find that HiZELS galaxies with observed H\alpha\ luminosities of ~ 10^{8.1-9.1} Lo have bolometric FIR luminosities of typical LIRGs, L_FIR ~ 10^{11.48+/-0.05} Lo. Combining the H\alpha\ and FIR luminosities, we derive median SFR = 32+/-5 Mo/yr and H\alpha\ extinctions of A(H\alpha) = 1.0+/-0.2 mag. Perhaps surprisingly, little difference is seen in typical HiZELS extinction levels compared to local star-forming galaxies. We confirm previous empirical stellar mass (M*) to A(H\alpha) relations and the little or no evolution up to z = 1.47. For HiZELS galaxies, we provide an empirical parametrisation of the SFR as a function of (u-z)_rest colours and 3.6\mu m photometry. We find that the observed H\alpha\ luminosity is a dominant SFR tracer when (u-z)_rest ~< 0.9 mag or when 3.6\mu m photometry > 22 mag (Vega) or when M* < 10^9.7 Mo. We do not find any correlation between the [OII]/H\alpha\ and FIR luminosity, suggesting that this emission line ratio does not trace the extinction of the most obscured star-forming regions. The luminosity-limited HiZELS sample tends to lie above of the so-called `main sequence' for star-forming galaxies, especially at low M*. This work suggests that obscured star formation is linked to the assembly of M*, with deeper potential wells in massive galaxies providing dense, heavily obscured environments in which stars can form rapidly.
    Monthly Notices of the Royal Astronomical Society 07/2013; 434(4). DOI:10.1093/mnras/stt1258 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts-that is, increased rates of star formation-in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ∼5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
    Nature 04/2013; 496(7445):329-333. DOI:10.1038/nature12050 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after subtracting sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I(250 microns) > 0.69_(-0.03)^(+0.03) (stat.)_(-0.06)^(+0.11) (sys.) MJy/sr, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.
    The Astrophysical Journal Letters 03/2013; 769(2). DOI:10.1088/2041-8205/769/2/L31 · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We exploit the deep and extended far infrared data sets (at 70, 100 and 160 um) of the Herschel GTO PACS Evolutionary Probe (PEP) Survey, in combination with the HERschel Multi tiered Extragalactic Survey (HerMES) data at 250, 350 and 500 um, to derive the evolution of the restframe 35 um, 60 um, 90 um, and total infrared (IR) luminosity functions (LFs) up to z~4. We detect very strong luminosity evolution for the total IR LF combined with a density evolution. In agreement with previous findings, the IR luminosity density increases steeply to z~1, then flattens between z~1 and z~3 to decrease at z greater than 3. Galaxies with different SEDs, masses and sSFRs evolve in very different ways and this large and deep statistical sample is the first one allowing us to separately study the different evolutionary behaviours of the individual IR populations contributing to the IR luminosity density. Galaxies occupying the well established SFR/stellar mass main sequence (MS) are found to dominate both the total IR LF and luminosity density at all redshifts, with the contribution from off MS sources (0.6 dex above MS) being nearly constant (~20% of the total IR luminosity density) and showing no significant signs of increase with increasing z over the whole 0.8<z<2.2 range. Sources with mass in the 10< log(M/Msun) <11 range are found to dominate the total IR LF, with more massive galaxies prevailing at the bright end of the high-z LF. A two-fold evolutionary scheme for IR galaxies is envisaged: on the one hand, a starburst-dominated phase in which the SMBH grows and is obscured by dust, is followed by an AGN dominated phase, then evolving toward a local elliptical. On the other hand, moderately starforming galaxies containing a low-luminosity AGN have various properties suggesting they are good candidates for systems in a transition phase preceding the formation of steady spiral galaxies.
    Monthly Notices of the Royal Astronomical Society 02/2013; 436(3). DOI:10.1093/mnras/stt1748 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using Herschel data from the deepest SPIRE and PACS surveys (HerMES and PEP) in COSMOS and GOODS (N+S), we examine the dust properties of IR-luminous (L_IR>10^10 L_sun) galaxies at 0.1<z<2 and determine how these evolve with cosmic time. The unique angle of this work is the rigorous analysis of survey selection effects, making this the first study of the star-formation-dominated, IR-luminous population within a framework almost entirely free of selection biases. We find that IR-luminous galaxies have SEDs with broad far-IR peaks characterised by cool/extended dust emission and average dust temperatures in the 25-45K range. Hot (T>45K) SEDs and cold (T<25K), cirrus-dominated SEDs are rare, with most sources being within the range occupied by warm starbursts such as M82 and cool spirals such as M51. We observe a luminosity-temperature (L-T) relation, where the average dust temperature of log[L_IR/L_sun]=12.5 galaxies is about 10K higher than that of their log[L_IR/L_sun]=10.5 counterparts. However, although the increased dust heating in more luminous systems is the driving factor behind the L-T relation, the increase in dust mass and/or starburst size with luminosity plays a dominant role in shaping it. Our results show that the dust conditions in IR-luminous sources evolve with cosmic time: at high redshift, dust temperatures are on average up to 10K lower than what is measured locally. This is manifested as a flattening of the L-T relation, suggesting that (U)LIRGs in the early Universe are typically characterised by a more extended dust distribution and/or higher dust masses than local equivalent sources. Interestingly, the evolution in dust temperature is luminosity dependent, with the fraction of LIRGs with T<35K showing a 2-fold increase from z~0 to z~2, whereas that of ULIRGs with T<35K shows a 6-fold increase.
    Monthly Notices of the Royal Astronomical Society 02/2013; 431(3). DOI:10.1093/mnras/stt330 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dust emission at sub-millimetre wavelengths allows us to trace the early phases of star formation in the Universe. In order to understand the physical processes involved in this mode of star formation, it is essential to gain knowledge about the dark matter structures - most importantly their masses - that sub-millimetre galaxies live in. Here we use the magnification effect of gravitational lensing to determine the average mass and dust content of sub-millimetre galaxies with 250mu flux densities of S_250>15mJy selected using data from the Herschel Multi-tiered Extragalactic Survey. The positions of hundreds of sub-millimetre foreground lenses are cross-correlated with the positions of background Lyman-break galaxies at z~3-5 selected using optical data from the Canada-France Hawaii Telescope Legacy Survey. We detect a cross-correlation signal at the 7-sigma level over a sky area of one square degree, with ~80% of this signal being due to magnification, whereas the remaining ~20% comes from dust extinction. Adopting some simple assumptions for the dark matter and dust profiles and the redshift distribution enables us to estimate the average mass of the halos hosting the sub-millimetre galaxies to be log(M_200/M_sun)=13.17+0.05-0.08(stat.) and their average dust mass fraction (at radii of >10kpc) to be M_dust/M_200~6x10^-5. This supports the picture that sub-millimetre galaxies are dusty, forming stars at a high rate, reside in massive group-sized halos, and are a crucial phase in the assembly and evolution of structure in the Universe.
    Monthly Notices of the Royal Astronomical Society 12/2012; 429(4). DOI:10.1093/mnras/sts585 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We combine far-infrared photometry from Herschel (PEP/HERMES) with deep mid-infrared spectroscopy from Spitzer to investigate the nature and the mass assembly history of a sample of 31 Luminous and Ultraluminous Infrared Galaxies at z~1 and 2 selected in GOODS-S with 24 $\mu$m fluxes between 0.2 and 0.5 mJy. We model the data with a self-consistent physical model (GRASIL) which includes a state-of-the-art treatment of dust extinction and reprocessing. We find that all of our galaxies appear to require massive populations of old (>1 Gyr) stars and, at the same time, to host a moderate ongoing activity of SF (SFR < 100 M$_{\odot}$/yr). The bulk of the stars appear to have been formed a few Gyr before the observation in essentially all cases. Only five galaxies of the sample require a recent starburst superimposed on a quiescent star formation history (SFH). We also find discrepancies between our results and those based on optical-only SED fitting for the same objects; by fitting their observed Spectral Energy Distributions with our physical model we find higher extinctions (by $\Delta$A_{V} ~ 0.81 and 1.14) and higher stellar masses (by $\Delta$Log(M*) ~ 0.16 and 0.36 dex) for z~1 and z~2 (U)LIRGs, respectively. The stellar mass difference is larger for the most dust obscured objects. We also find lower SFRs than those computed from L_{IR} using the Kennicutt relation due to the significant contribution to the dust heating by intermediate-age stellar populations through 'cirrus' emission (~73% and ~66% of total L_{IR} for z~1 and z~2 (U)LIRGs, respectively).
    The Astrophysical Journal 11/2012; 762(2). DOI:10.1088/0004-637X/762/2/108 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the far-infrared (IR) and sub-millimeter properties of a sample of ultraviolet (UV) selected galaxies at z\sim1.5. Using stacking at 250, 350 and 500 um from Herschel Space Observatory SPIRE imaging of the COSMOS field obtained within the HerMES key program, we derive the mean IR luminosity as a function of both UV luminosity and slope of the UV continuum beta. The IR to UV luminosity ratio is roughly constant over most of the UV luminosity range we explore. We also find that the IR to UV luminosity ratio is correlated with beta. We observe a correlation that underestimates the correlation derived from low-redshift starburst galaxies, but is in good agreement with the correlation derived from local normal star-forming galaxies. Using these results we reconstruct the IR luminosity function of our UV-selected sample. This luminosity function recovers the IR luminosity functions measured from IR selected samples at the faintest luminosities (Lir ~ 10^{11} L_sun), but might underestimate them at the bright-end (Lir > 5.10^{11} L_sun). For galaxies with 10^{11}<Lir/L_sun<10^{13}, the IR luminosity function of a UV selection recovers (given the differences in IR-based estimates) 52-65 to 89-112 per cent of the star-formation rate density derived from an IR selection. The cosmic star-formation rate density derived from this IR luminosity function is 61-76 to 100-133 per cent of the density derived from IR selections at the same epoch. Assuming the latest Herschel results and conservative stacking measurements, we use a toy model to fully reproduce the far IR luminosity function from our UV selection at z\sim 1.5. This suggests that a sample around 4 magnitudes deeper (i.e. reaching u \sim 30 mag) and a large dispersion of the IR to UV luminosity ratio are required.
    Monthly Notices of the Royal Astronomical Society 11/2012; 429(2). DOI:10.1093/mnras/sts397 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present measurements of the auto- and cross-frequency power spectra of the cosmic infrared background (CIB) at 250, 350, and 500um (1200, 860, and 600 GHz) from observations totaling ~ 70 deg^2 made with the SPIRE instrument aboard the Herschel Space Observatory. We measure a fractional anisotropy dI / I = 14 +- 4%, detecting signatures arising from the clustering of dusty star-forming galaxies in both the linear (2-halo) and non-linear (1-halo) regimes; and that the transition from the 2- to 1-halo terms, below which power originates predominantly from multiple galaxies within dark matter halos, occurs at k_theta ~ 0.1 - 0.12 arcmin^-1 (l ~ 2160 - 2380), from 250 to 500um. New to this paper is clear evidence of a dependence of the Poisson and 1-halo power on the flux-cut level of masked sources --- suggesting that some fraction of the more luminous sources occupy more massive halos as satellites, or are possibly close pairs. We measure the cross-correlation power spectra between bands, finding that bands which are farthest apart are the least correlated, as well as hints of a reduction in the correlation between bands when resolved sources are more aggressively masked. In the second part of the paper we attempt to interpret the measurements in the framework of the halo model. With the aim of fitting simultaneously with one model the power spectra, number counts, and absolute CIB level in all bands, we find that this is achievable by invoking a luminosity-mass relationship, such that the luminosity-to-mass ratio peaks at a particular halo mass scale and declines towards lower and higher mass halos. Our best-fit model finds that the halo mass which is most efficient at hosting star formation in the redshift range of peak star-forming activity, z ~ 1-3, is log(M_peak/M_sun) ~ 12.1 +- 0.5, and that the minimum halo mass to host infrared galaxies is log(M_min/M_sun) ~ 10.1 +- 0.6.
    The Astrophysical Journal 08/2012; 772(1). DOI:10.1088/0004-637X/772/1/77 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of the far-infrared (IR) properties of a stellar mass selected sample of 1.5 < z < 3 galaxies with log (M*/M⊙) > 9.5 drawn from the Great Observatories Origins Deep Survey (GOODS) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Survey (GNS), the deepest H-band Hubble Space Telescope survey of its type prior to the installation of Wide Field Camera 3 (WFC3). We use far-IR and submm data from the Photoconductor Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) instruments on-board Herschel, taken from the PACS Evolutionary Probe (PEP) and Herschel Multi-Tiered Extragalactic Survey (HerMES) key projects, respectively. We find a total of 22 GNS galaxies, with median log (M*/M⊙) = 10.8 and z = 2.0, associated with 250 μm sources detected with signal-to-noise ratio (SNR) > 3. We derive mean total IR luminosity log LIR(L⊙) = 12.36 ± 0.05 and corresponding star formation rate (SFR)IR + UV = (280 ± 40) M⊙ yr−1 for these objects, and find them to have mean dust temperature Tdust ≈ 35 K. We find that the SFR derived from the far-IR photometry combined with ultraviolet (UV)-based estimates of unobscured SFR for these galaxies is on average more than a factor of 2 higher than the SFR derived from extinction-corrected UV emission alone, although we note that the IR-based estimate is subject to substantial Malmquist bias. To mitigate the effect of this bias and extend our study to fainter fluxes, we perform a stacking analysis to measure the mean SFR in bins of stellar mass. We obtain detections at the 2–4σ level at SPIRE wavelengths for samples with log (M*/M⊙) > 10. In contrast to the Herschel detected GNS galaxies, we find that estimates of SFRIR + UV for the stacked samples are comparable to those derived from extinction-corrected UV emission, although the uncertainties are large. We find evidence for an increasing fraction of dust obscured star formation with stellar mass, finding , which is likely a consequence of the mass–metallicity relation.
    Monthly Notices of the Royal Astronomical Society 06/2012; 425(1). DOI:10.1111/j.1365-2966.2012.21499.x · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a list of 13 candidate gravitationally lensed submillimeter galaxies (SMGs) from 95 square degrees of the Herschel Multi-tiered Extragalactic Survey, a surface density of 0.14\pm0.04deg^{-2}. The selected sources have 500um flux densities (S_500) greater than 100mJy. Gravitational lensing is confirmed by follow-up observations in 9 of the 13 systems (70%), and the lensing status of the four remaining sources is undetermined. We also present a supplementary sample of 29 (0.31\pm0.06deg^{-2}) gravitationally lensed SMG candidates with S_500=80--100mJy, which are expected to contain a higher fraction of interlopers than the primary candidates. The number counts of the candidate lensed galaxies are consistent with a simple statistical model of the lensing rate, which uses a foreground matter distribution, the intrinsic SMG number counts, and an assumed SMG redshift distribution. The model predicts that 32--74% of our S_500>100mJy candidates are strongly gravitationally lensed (mu>2), with the brightest sources being the most robust; this is consistent with the observational data. Our statistical model also predicts that, on average, lensed galaxies with S_500=100mJy are magnified by factors of ~9, with apparently brighter galaxies having progressively higher average magnification, due to the shape of the intrinsic number counts. 65% of the sources are expected to have intrinsic 500micron flux densities less than 30mJy. Thus, samples of strongly gravitationally lensed SMGs, such as those presented here, probe below the nominal Herschel detection limit at 500 micron. They are good targets for the detailed study of the physical conditions in distant dusty, star-forming galaxies, due to the lensing magnification, which can lead to spatial resolutions of ~0.01" in the source plane.
    The Astrophysical Journal 05/2012; 762(1). DOI:10.1088/0004-637X/762/1/59 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.
    Nature 05/2012; 485(7397):213-6. DOI:10.1038/nature11096 · 42.35 Impact Factor

Publication Stats

2k Citations
380.44 Total Impact Points

Institutions

  • 2010–2014
    • University of Sussex
      • • Astronomy Centre
      • • Department of Physics and Astronomy
      Brighton, England, United Kingdom
  • 2013
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, Scotland, United Kingdom
    • University of British Columbia - Vancouver
      • Department of Physics and Astronomy
      Vancouver, British Columbia, Canada
    • Cornell University
      • Department of Astronomy
      Ithaca, New York, United States
  • 2012
    • Cardiff University
      • School of Physics and Astronomy
      Cardiff, Wales, United Kingdom
    • University College London
      Londinium, England, United Kingdom
    • University of Oxford
      • Department of Physics
      Oxford, England, United Kingdom
    • Paris Diderot University
      Lutetia Parisorum, Île-de-France, France
  • 2011
    • California Institute of Technology
      • Department of Astronomy
      Pasadena, California, United States