A.F. Lotter

Utrecht University, Utrecht, Utrecht, Netherlands

Are you A.F. Lotter?

Claim your profile

Publications (291)506.57 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized palaeoclimate data sets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth's recent past. Here we present a new chironomid-based palaeotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene. Latitudinal and longitudinal patterns of inferred temperature change are in excellent agreement with simulations by the ECHAM-4 model, implying that atmospheric general circulation models like ECHAM-4 can successfully predict regionally diverging temperature trends in Europe, even when conditions differ significantly from present. However, ECHAM-4 infers larger amplitudes of change and higher temperatures during warm phases than our palaeotemperature estimates, suggesting that this and similar models may overestimate past and potentially also future summer temperature changes in Europe. http://www.nature.com/ncomms/2014/140911/ncomms5914/full/ncomms5914.html
    Nature Communications 09/2014; 5(4914). · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Taxon-specific stable carbon isotope (δ13C) analysis of chitinous remains of invertebrates can provide valuable information about the carbon sources used by invertebrates living in specific habitats of lake ecosystems (for example, sediments, water column, or aquatic vegetation). This is complementary to δ13C of sedimentary organic matter (SOM), which provides an integrated signal of organic matter produced in a lake and its catchment, and of diagenetic processes within sediments. In a sediment record from Strandsjön (Sweden) covering the past circa 140 years, we analyzed SOM geochemistry (δ13C, C:Natomic, organic carbon content) and δ13C of chitinous invertebrate remains in order to examine whether taxon-specific δ13C records could be developed for different invertebrate groups and whether these analyses provide insights into past changes of organic carbon sources for lacustrine invertebrates available in benthic and planktonic compartments of the lake. Invertebrate taxa included benthic chironomids (Chironomus, Chironomini excluding Chironomus, Tanytarsini, and Tanypodinae), filter-feeders on suspended particulate organic matter (Daphnia, Plumatella and Cristatella mucedo), and Rhabdocoela. δ13C of chironomid remains indicated periodic availability of 13C-depleted carbon sources in the benthic environment of the lake as δ13C values of the different chironomid taxa fluctuated simultaneously between −34.7 and −30.5 ‰ (VPDB). Daphnia and Bryozoa showed parallel changes in their δ13C values which did not coincide with variations in δ13C of chironomids, though, and a 2–3 ‰ decrease since circa AD 1960. The decrease in δ13C of Daphnia and Bryozoa could indicate a decrease in phytoplankton δ13C as a result of lower lake productivity, which is in accordance with historical information about the lake that suggests a shift to less eutrophic conditions after AD 1960. In contrast, Rhabdocoela cocoons were characterized by relatively high δ13C values (−30.4 to −28.2 ‰) that did not show a strong temporal trend, which could be related to the predatory feeding mode and wide prey spectrum of this organism group. The taxon-specific δ13C analyses of invertebrate remains indicated that different carbon sources were available for the benthic chironomid larvae than for the filter-feeding Daphnia and bryozoans. Our results therefore demonstrate that taxon-specific analysis of δ13C of organic invertebrate remains can provide complementary information to measurements on bulk SOM and that δ13C of invertebrate remains may allow the reconstruction of past changes in carbon sources and their δ13C in different habitats of lake ecosystems.
    Journal of Paleolimnology 08/2014; 52(1-2). · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The number of well-dated pollen diagrams in Europe has increased considerably over the last 30 years and many of them have been submitted to the European Pollen Database (EPD). This allows for the construction of increasingly precise maps of Holocene vegetation change across the continent. Chronological information in the EPD has been expressed in uncalibrated radiocarbon years, and most chronologies to date are based on this time scale. Here we present new chronologies for most of the datasets stored in the EPD based on calibrated radiocarbon years. Age information associated with pollen diagrams is often derived from the pollen stratigraphy itself or from other sedimentological information. We reviewed these chronological tie points and assigned uncertainties to them. The steps taken to generate the new chronologies are described and the rationale for a new classification system for age uncertainties is introduced. The resulting chronologies are fit for most continental-scale questions. They may not provide the best age model for particular sites, but may be viewed as general purpose chronologies. Taxonomic particularities of the data stored in the EPD are explained. An example is given of how the database can be queried to select samples with appropriate age control as well as the suitable taxonomic level to answer a specific research question.
    Vegetation History and Archaeobotany 01/2014; 23(1):75-86. · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-resolution multiproxy analyses were performed on a 128 cm section of organic sediments accumulated in a small mountain lake in NW Iberia (Laguna de la Roya, 1608 m asl). The pollen stratigraphy together with radiocarbon dating provided the basis for a chronology ranging from 15,600 to 10,500 cal yr BP. Chironomid-inferred July air temperatures suggest a temperature range from 7 to 13 °C, also evidencing two well-established cold periods which may be equivalent to the INTIMATE stages GS-2a and GS-1. Furthermore, a number of short cold events (with summer temperatures dropping about 0.5-1 °C) appear intercalated within the Lateglacial Interstadial (possibly equivalent to the INTIMATE cold events GI-1d, GI-1c2 and GI-1b) and the early Holocene (possibly equivalent to the 11.2 k event). The temperature variations predicted by our reconstruction allow explaining the changes in local conditions and productivity of the lake inferred from the biological record of the same sediment core. Furthermore, they also agree with the local and regional vegetation dynamics, and the main oscillations deduced for the vegetation belts. Based on its chronology our multiproxy record indicates a similar temperature development in NW Iberia as inferred by the Greenland δ18O record, the marine deep-sea records off the Atlantic Iberian Margin, and other chironomid-based Lateglacial temperature reconstructions from Europe. Nevertheless, the impact of most of the less intense Lateglacial/early Holocene cold events in NW Iberia was most probably limited to very sensitive sites that were very close to ecotonal situations. Particularly, our new pollen record indicates that they were represented as three minor environmental crises occurring during the Lateglacial Interestadial in this area. The Older Dryas event (in our usage corresponding to the Aegelsee Oscillation in Central Europe and event GI-1d in central Greenland) has previously been described in this region, but its age and duration (ca 14,250-14050 cal yr BP) is now better constrained. The two subsequent stages, La Roya I (ca 13,600-13,400 cal yr BP) and La Roya II (ca 13,300-12,900 cal yr BP) have been described for first time in NW Iberia.
    Quaternary Science Reviews 11/2013; · 4.57 Impact Factor
  • Source
  • Source
    07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To provide insights into the long-term evolution of aquatic ecosystems without human interference, we here evaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co-evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ∼1900 varve years), the lake was ∼10–15 m deep and characterized by anoxic bottom-water conditions and a high nutrient content. The following ∼5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water-column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (∼4000–5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient-rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short-term climate variability as reflected in centennial-scale climate perturbations.
    Boreas 07/2013; 42:714-728. · 2.46 Impact Factor
  • Source
    Boreas 07/2013; 42:714-728. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding past methane dynamics in arctic wetlands and lakes is crucial for estimating future methane release. Methane fluxes from lake ecosystems have increasingly been studied, yet only few reconstructions of past methane emissions from lakes are available. In this study, we develop an approach to assess changes in methane availability in lakes based on δ13C of chitinous invertebrate remains and apply this to a sediment record from a Siberian thermokarst lake. Diffusive methane fluxes from the surface of ten newly sampled Siberian lakes and seven previously studied Swedish lakes were compared to taxon-specific δ13C values of invertebrate remains from lake surface sediments to investigate whether these invertebrates assimilated 13C-depleted carbon typical for methane. Remains of chironomid larvae of the tribe Orthocladiinae that, in the study lakes, mainly assimilate plant-derived carbon had higher δ13C than other invertebrate groups. δ13C of other invertebrates such as several chironomid groups (Chironomus, Chironomini, Tanytarsini, and Tanypodinae), cladocerans (Daphnia), and ostracods were generally lower. δ13C of Chironomini and Daphnia, and to a lesser extent Tanytarsini was variable in the lakes and lower at sites with higher diffusive methane fluxes. δ13C of Chironomini, Tanytarsini, and Daphnia were correlated significantly with diffusive methane flux in the combined Siberian and Swedish dataset (r = −0.72, p = 0.001, r = −0.53, p = 0.03, and r = −0.81, p < 0.001, respectively), suggesting that δ13C in these invertebrates was affected by methane availability. In a second step, we measured δ13C of invertebrate remains from a sediment record of Lake S1, a shallow thermokarst lake in northeast Siberia. In this record, covering the past ca 1000 years, δ13C of taxa most sensitive to methane availability (Chironomini, Tanytarsini, and Daphnia) was lowest in sediments deposited from ca AD 1250 to ca AD 1500, and after AD 1970, coinciding with warmer climate as indicated by an independent local temperature record. As a consequence the offset in δ13C between methane-sensitive taxa and bulk organic matter was higher in these sections than in other parts of the core. In contrast, δ13C of other invertebrate taxa did not show this trend. Our results suggest higher methane availability in the study lake during warmer periods and that thermokarst lakes can respond dynamically in their methane output to changing environmental conditions.
    Quaternary Science Reviews 04/2013; 66:74-84. · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-resolution quantitative temperature records from continents covering glacial to interglacial transitions are scarce but important for understanding the climate system. We present the first decadal resolution record of continental temperatures in Central Europe during the last deglaciation (~14,600-10,600 cal. yr B.P.) based on the organic geochemical palaeothermometer TEX86. The TEX86-inferred temperature record from Lake Lucerne (Vierwaldstättersee, Switzerland) reveals typical oscillations during the Late Glacial Interstadial, followed by an abrupt cooling of 2°C at the onset of Younger Dryas and a rapid warming of 4°C at the onset of the Holocene, within less than 350 years. The remarkable resemblance with the Greenland and regional stable oxygen isotope records suggests that temperature changes in continental Europe were dominated by large-scale reorganizations in the northern hemispheric climate system.
    Geophysical Research Letters 03/2013; 40(5):948-953. · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To provide insights into the long‐term evolution of aquatic ecosystems without human interference, we here evaluate a decadal‐ to centennial‐scale‐resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co‐evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ∼1900 varve years), the lake was ∼10–15 m deep and characterized by anoxic bottom‐water conditions and a high nutrient content. The following ∼5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water‐column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (∼4000–5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient‐rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short‐term climate variability as reflected in centennial‐scale climate perturbations.
    Boreas 01/2013; 42(3). · 2.46 Impact Factor
  • Source
  • Source
  • Source
    S. Samartin, O. Heiri, A. F. Lotter, W. Tinner
    [Show abstract] [Hide abstract]
    ABSTRACT: Chironomids preserved in a sediment core from Lago di Origlio (416 m a.s.l.), a lake in the foreland of the Southern Swiss Alps, allowed quantitative reconstruction of Late Glacial and Early Holocene summer temperatures using a combined Swiss-Norwegian temperature inference model based on chironomid assemblages from 274 lakes. We reconstruct July air temperatures of ca. 10 °C between 17 300 and 16 000 cal yr BP, a rather abrupt warming to ca. 12.0 °C at ca. 16 500-16 000 cal yr BP, and a strong temperature increase at the transition to the Bølling/Allerød interstadial with average temperatures of about 14 °C. During the Younger Dryas and earliest Holocene similar temperatures are reconstructed as for the interstadial. The rather abrupt warming at 16 500-16 000 cal yr BP is consistent with sea-surface temperature as well as speleothem records, which indicate a warming after the end of Heinrich event 1 (sensu stricto) and before the Bølling/Allerød interstadial in southern Europe and the Mediterranean Sea. Pollen records from Origlio and other sites in southern Switzerland and northern Italy indicate an early reforestation of the lowlands 2000-1500 yr prior to the large-scale afforestation of Central Europe at the onset of the Bølling/Allerød period at ca. 14 700-14 600 cal yr BP. Our results suggest that these early afforestation processes in the formerly glaciated areas of northern Italy and southern Switzerland have been promoted by increasing temperatures.
    Climate of the Past. 11/2012; 8(6):1913-1927.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5–1.8 × 109 cells g−1 dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs cell−1. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.
    Organic Geochemistry. 08/2012; 49:86-95.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A high-resolution paleolimnological study from Lake Brazi, a small mountain lake in the Southern Carpathian Mountains, Romania, shows distinct diatom responses to late glacial and early Holocene climate change between ca. 15,750 and 10,000 cal year BP. Loss-on-ignition, titanium, sulphur, phosphorus, biogenic silica content, and diatom assemblage composition were used as proxies for past environmental changes. Total epilimnetic phosphorus (TP) concentrations and lakewater pH were reconstructed quantitatively using diatom-TP and pH transfer functions. The most remarkable changes in the aquatic ecosystem were found at ca. 12,870 and 10,400 cal year BP. Whereas the onset of the Younger Dryas (YD) climatic reversal was conspicuous in our record, the beginning of the Holocene was not well marked. Two diatom assemblage zones characterize the YD in Lake Brazi, suggesting a bipartite division of this climatic oscillation. The diatom responses to the YD cooling were (1) a shift from Staurosira venter to Stauroforma exiguiformis dominance; (2) a decrease in overall diatom diversity; (3) a decrease in lake productivity, inferred from DI-TP, organic matter, and biogenic silica content; and (4) a lowering of the DI-pH. Compositional change of the diatom assemblages suggested a sudden shift towards more acidic lake conditions at 12,870 cal year BP, which is interpreted as a response to prolonged ice cover and thus shorter growing seasons and/or enhanced outwash of humic acids from the catchment. Taking into account the chironomid-based inference of only moderate July mean temperature decrease (<1 °C), together with the pollen-inferred regional opening of the forest cover and expansion of steppe-tundra, our data suggest that ecosystem changes in the Southern Carpathians during the YD were likely determined by strong seasonal changes.
    Journal of Paleolimnology 05/2012; 48:417–431. · 2.21 Impact Factor
  • Source
    S. Samartin, O. Heiri, A. F. Lotter, W. Tinner
    [Show abstract] [Hide abstract]
    ABSTRACT: Chironomids preserved in a sediment core from Lago di Origlio (416 m a.s.l.), a lake in the foreland of the Southern Swiss Alps, allowed quantitative reconstruction of Late Glacial and early Holocene temperatures using a combined Swiss-Norwegian temperature inference model based on chironomid assemblages from 274 lakes. We reconstruct July air temperatures of ca. 10 °C between 17 300 and 16 000 cal yr BP, a rather abrupt warming to ca. 12.0 °C at ca. 16 500-16 000 cal yr BP, and a strong temperature increase at the transition to the Bølling/Allerød Interstadial with average temperatures of about 14 °C. During the Younger Dryas and earliest Holocene very similar temperatures are reconstructed as for the interstadial. The rather abrupt warming at 16 500-16 000 cal yr BP is consistent with sea-surface temperature as well as speleotherm records, which indicate a marked Pre-Bølling warming after the end of Heinrich event 1 in southern Europe and the Mediterranean Sea. The pollen record of Origlio and other sites from southern Switzerland and northern Italy indicate an early reforestation of the lowlands prior to the large-scale afforestation at the onset of the Bølling period at 14 700 cal yr BP in Central Europe. Our results suggest that these afforestation processes in the formerly glaciated areas of southern Switzerland and Northern Italy have been promoted by increasing temperatures.
    Climate of the Past Discussions 05/2012; 8(3):1615-1651.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Keywords: abrupt climate change Holsteinian interglacial MIS 11 8.2 ka event δ 18 O silica varve chronology To gain insights into the mechanisms of abrupt climate change within interglacials, we have examined the characteristics and spatial extent of a prominent, climatically induced vegetation setback during the Holsteinian interglacial (Marine Isotope Stage 11c). Based on analyses of pollen and varves of lake sediments from Dethlingen (northern Germany), this climatic oscillation, here termed the "Older Holsteinian Oscilla-tion" (OHO), lasted 220 years. It can be subdivided into a 90-year-long decline of temperate tree taxa associ-ated with an expansion of Pinus and herbs, and a 130-year-long recovery phase marked by the expansion of Betula and Alnus, and the subsequent recovery of temperate trees. The climate-induced nature of the OHO is corroborated by changes in diatom assemblages and δ 18 O measured on biogenic silica indicating an impact on the aquatic ecosystem of the Dethlingen paleolake. The OHO is widely documented in pollen records from Europe north of 50° latitude and is characterized by boreal climate conditions with cold winters from the British Isles to Poland, with a gradient of decreasing temperature and moisture availability, and increased continentality towards eastern Europe. This pattern points to a weakened influence of the westerlies and/or a stronger influence of the Siberian High. A comparison of the OHO with the 8.2 ka event of the Holocene re-veals close similarities regarding the imprint on terrestrial ecosystems and the interglacial boundary condi-tions. Hence, in analogy to the 8.2 ka event, a transient, meltwater-induced slowdown of the North Atlantic Deep Water formation appears as a plausible trigger mechanism for the OHO. If correct, meltwater release into the North Atlantic may be a more common agent of abrupt climate change during interglacials than pre-viously thought. We conclude that meltwater-induced climate setbacks during interglacials preferentially oc-curred when low rates of summer insolation increase during the preceding terminations facilitated the persistence of large-scale continental ice-sheets well into the interglacials.
    Global and Planetary Change 04/2012; 92/93:224-235. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper summarises the results of tephrochronological investigations into a suite of central and southern European records, which include: Rotmeer, southern Germany; Soppensee and Rotsee, central Swiss Plateau; Lago di Lavarone and Lago Piccolo di Avigliana, Italian southern Alpine foreland. These sites provide records of palaeoenvironmental changes for the Last Glacial to Interglacial Transition (LGIT) at the boundary between North Atlantic and Mediterranean climatic in␣uences. Chemical character- isation of glass shards in volcanic ash layers indicates that multiple volcanic sources have contributed to the central European tephra record. Amongst other volcanic markers, the Laacher See Tephra, originating from the Eifel region of Germany c. 12.9 􏰀 0.1 ka, and the Vedde Ash from Iceland c. 12.1 􏰀 0.1 ka, are found co-located within the sediments of Rotmeer, Soppensee, Rotsee and Lago Piccolo di Avigliana. These key horizons, which bracket the onset of the Younger Dryas stadial, provide precise calendrically- dated tie points around which a detailed picture of the timing of local and regional environmental transitions can be constructed. Using the co-located tephra layers the re-colonisation of Northern Italian catchment areas by Quercus is shown to occur just prior to the deposition of the Laacher See Tephra layer, whereas to the North of the Alps Quercus and other thermophilous trees do not reappear until several centuries after the deposition of the Vedde Ash. Furthermore, the discovery of the Vedde Ash in Lago Piccolo di Avigliana and Lago di Lavarone is indicative of atmospheric transport of polar air into southern Europe during the Younger Dryas stadial, matching evidence proposed for such transport of polar air during the Last Glacial Maximum (LGM).
    Quaternary Science Reviews 01/2012; 36:50-58. · 4.57 Impact Factor

Publication Stats

5k Citations
506.57 Total Impact Points

Institutions

  • 2001–2014
    • Utrecht University
      • • Laboratory of Palaeobotany and Palynology
      • • Faculty of Geosciences
      Utrecht, Utrecht, Netherlands
  • 1989–2011
    • Universität Bern
      • Institute of Plant Sciences
      Berna, Bern, Switzerland
  • 2010
    • Koninklijk Nederlands Instituut voor Onderzoek der Zee - NIOZ
      • Department of Marine Organic Biogeochemistry (BGC)
      Burg, North Holland, Netherlands
    • Tallinn University
      • Institute of Ecology
      Tallinn, Harjumaa, Estonia
  • 1993–2007
    • University of Bergen
      • Department of Biology
      Bergen, Hordaland, Norway
  • 2006
    • Università di Pisa
      Pisa, Tuscany, Italy
  • 2002–2006
    • Umeå University
      • Department of Ecology and Environmental Science
      Umeå, Västerbotten, Sweden
    • University of Joensuu
      Yoensu, Eastern Finland Province, Finland
  • 2000
    • Eawag: Das Wasserforschungs-Institut des ETH-Bereichs
      Duebendorf, Zurich, Switzerland
  • 1995
    • Universität Trier
      Trier, Rheinland-Pfalz, Germany