A. M. Ghez

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States

Are you A. M. Ghez?

Claim your profile

Publications (270)729.57 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the circumstellar disc fraction as determined from L-band excess observations of the young, massive Arches and Quintuplet clusters residing in the central molecular zone of the Milky Way. The Quintuplet cluster was searched for L-band excess sources for the first time. We find a total of 26 excess sources in the Quintuplet cluster and 21 in the Arches cluster, of which 13 are new detections. With the aid of proper motion membership samples, the disc fraction of the Quintuplet cluster was derived for the first time to be 4.0 +/- 0.7%. There is no evidence for a radially varying disc fraction in this cluster. In the case of the Arches cluster, a disc fraction of 9.2 +/- 1.2% approximately out to the cluster's predicted tidal radius, r < 1.5 pc, is observed. This excess fraction is consistent with our previously found disc fraction in the cluster in the radial range 0.3 < r < 0.8 pc. In both clusters, the host star mass range covers late A- to early B-type stars, 2 < M < 15 Msun, as derived from J-band photospheric magnitudes. We discuss the unexpected finding of dusty circumstellar discs in these UV intense environments in the context of primordial disc survival and formation scenarios of secondary discs. We consider the possibility that the L-band excess sources in the Arches and Quintuplet clusters could be the high-mass counterparts to T Tauri pre-transitional discs. As such a scenario requires a long pre-transitional disc lifetime in a UV intense environment, we suggest that mass transfer discs in binary systems are a likely formation mechanism for the B-star discs observed in these starburst clusters.
    02/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report new observations of Galactic Center source G2 from the W. M. Keck Observatory. G2 is a dusty red object associated with gas that shows tidal interactions as it nears closest approach (periapse) with the Galaxy's central black hole. Our observations, conducted as G2 passed through periapse, were designed to test the proposal that G2 is a 3 earth mass gas cloud. Such a cloud should be tidally disrupted during periapse passage. The data were obtained using the Keck II laser guide star adaptive optics system (LGSAO) and the facility near-infrared camera (NIRC2) through the K' [2.1 $\mu$m] and L' [3.8 $\mu$m] broadband filters. Several key results emerge from these observations: 1) G2 has survived its closest approach to the central black hole as a compact, unresolved source at L'; 2) G2's L' brightness measurements are consistent with those over the last decade; 3) G2's motion continues to be consistent with a Keplerian model. These results rule out G2 as a pure gas cloud and imply that G2 has a central star. This star has a luminosity of 30 $L_{\odot} $ and is surrounded by a large (2 AU) optically thick dust shell. We suggest that G2 is a binary star merger product and will ultimately appear similar to the B-stars that are tightly clustered around the black hole (the so-called S-star cluster). In memoriam of Gerry Neugebauer (1932-2014).
    The Astrophysical Journal Letters 10/2014; 796(1). · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The central parsec of our Galaxy hosts not only a supermassive black hole, but also a large population of young stars (age <6 Myr) whose presence is puzzling given how inhospitable the region is for star formation. The strong tidal forces require gas densities many orders of magnitude higher than is found in typical molecular clouds. Kinematic observations of this young nuclear cluster show complex structures, including a well-defined inner disk, but also a substantial off-disk population. Spectroscopic and photometric measurements indicate the initial mass function (IMF) differs significantly from the canonical IMF found in the solar neighborhood. These observations have led to a number of proposed star formation scenarios, such as an infalling massive star cluster, a single infalling molecular cloud, or cloud-cloud collisions. I will review recent works on the young stars in the central parsec and discuss connections with young nuclear star clusters in other galaxies, such as M31, and with star formation in the larger central molecular zone.
    Proceedings of the International Astronomical Union 10/2014; 9(S303):211-219.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We discuss observations of Sagittarius A* with NACO@VLT in K-band and recent synchronous observations with NIRC2@Keck II and OSIRIS@Keck I in L′-band and H-band, respectively. The variability of Sagittarius A* in the near infrared is a continuous one-state process that can be described by a pure red-noise process having a timescale of a few hours. We describe this process and its properties in detail. Our newest observations with the Keck telescopes represent the first truly synchronous high cadence data set to test for time variability of the spectral index within the near infrared. We discovered a time-variable spectral index that might be interpreted as a time lag of the L′-band with respect to the H-band.
    Proceedings of the International Astronomical Union 10/2014; 9(S303):274-282.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Galactic central black hole and the central cluster of young stars are surrounded by a clumpy gas disk (the circumnuclear disk, CND) that rotates about them at a distance of ≃ 1 pc. The gas in this warm, turbulent, magnetized disk is ultimately likely to migrate into the central cavity and fuel future star formation and black hole accretion. We have observed two fields of approximately 20″ × 20″ in the CND at NIR wavelengths with the OSIRIS integral-field spectrometer at Keck Observatory. These two fields are located at the interface between the neutral and the ionized regions. Our data cover two H2 lines as well as the Brγ line of the Hi spectrum. The signal-to-noise ratio per spatial pixel of each line varies considerably across the field and becomes quite low in some regions. In order to avoid degrading the spatial resolution, we have developed a novel three-dimensional method to analyze the data in terms of regularized parameter maps. The method proves very efficient in retrieving all the information contained in the spectral line emission while not degrading the spatial resolution. We present this new method to analyze 3D spectroscopic data and describe our preliminary results on the structure of the ionized-neutral interface.
    Proceedings of the International Astronomical Union 10/2014; 9(S303):109-113.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a model of field-dependent aberrations arising in the NIRC2 instrument on the W. M. Keck II telescope. We use high signal-to-noise phase diversity data employing a source in the Nasmyth focal plane to construct a model of the optical path difference as a function of field position and wavelength. With a differential wavefront error of up to 190 nm, this effect is one of the main sources of astrometric and photometric measurement uncertainties. Our tests of temporal stability show sufficient reliability for our measurements over a 20-month period at the field extrema. Additionally, while chromaticity exists, applying a correction for field-dependent aberrations provides overall improvement compared to the existing aberrations present across the field of view.
    SPIE Astronomical Telescopes + Instrumentation; 08/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first detection from the Spitzer Space Telescope of 4.5 micron variability from Sgr A*, the emitting source associated with the Milky Way's central black hole. The >23 hour continuous light curve was obtained with the IRAC instrument in 2013 December. The result characterizes the variability of Sgr A* prior to the closest approach of the G2 object, a putative infalling gas cloud that orbits close to Sgr A*. The high stellar density at the location of Sgr A* produces a background of ~250 mJy at 4.5 microns in each pixel with a large pixel-to-pixel gradient, but the light curve for the highly variable Sgr A* source was successfully measured by modeling and removing the variations due to pointing wobble. The observed flux densities range from the noise level of ~0.7 mJy rms in a 6.4-s measurement to ~10 mJy. Emission was seen above the noise level ~34% of the time. The light curve characteristics, including the flux density distribution and structure function, are consistent with those previously derived at shorter infrared wavelengths. We see no evidence in the light curve for activity attributable to the G2 interaction at the observing epoch, ~100 days before the expected G2 periapsis passage. The IRAC light curve is more than a factor of two longer than any previous infrared observation, improving constraints on the timescale of the break in the power spectral distribution of Sgr A* flux densities. The data favor the longer of the two previously published values for the timescale.
    The Astrophysical Journal 08/2014; 793(2). · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-precision infrared astrometry is a powerful tool for the study of resolved stellar populations throughout our Galaxy. We highlight two particular science cases that require precise infrared astrometry: (1) measuring the initial mass function in massive young clusters throughout the MilkyWay and (2) finding isolated black holes that photometrically and astrometrically lens background bulge stars. Using astrometric results from these science cases, we perform a comparative analysis of the infrared astrometric capabilities from the Keck single-conjugate adaptive optics (AO) system, the Gemini multi-conjugate AO system, and the Hubble WFC3IR instrument. For the most crowded fields and a small region of interest, we show that Keck's single-conjugate AO system and the well-characterized NIRC2 instrument produce the highest astrometric precision at ~150 μas. However, for targets that cover a wider field of view, both the Gemini South AO Imager (GSAOI) and HST WFC3IR should be considered carefully. GSAOI currently delivers lower astrometric precision than HST WFC3IR for a given integration time; but, programs that require more frequent astrometric measurements over longer periods of time may benefit from the higher availability and possibly longer lifetime of GSAOI.
    SPIE Astronomical Telescopes + Instrumentation; 07/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IRIS (InfraRed Imaging Spectrograph) is a first light near-infrared diffraction limited imager and integral field spectrograph being designed for the future Thirty Meter Telescope (TMT). IRIS is optimized to perform astronomical studies across a significant fraction of cosmic time, from our Solar System to distant newly formed galaxies (Barton et al. [1]). We present a selection of the innovative science cases that are unique to IRIS in the era of upcoming space and ground-based telescopes. We focus on integral field spectroscopy of directly imaged exoplanet atmospheres, probing fundamental physics in the Galactic Center, measuring 10^4 to 10^10 Msun supermassive black hole masses, resolved spectroscopy of young star-forming galaxies (1 < z < 5) and first light galaxies (6 < z < 12), and resolved spectroscopy of strong gravitational lensed sources to measure dark matter substructure. For each of these science cases we use the IRIS simulator (Wright et al. [2], Do et al. [3]) to explore IRIS capabilities. To highlight the unique IRIS capabilities, we also update the point and resolved source sensitivities for the integral field spectrograph (IFS) in all five broadband filters (Z, Y, J, H, K) for the finest spatial scale of 0.004" per spaxel. We briefly discuss future development plans for the data reduction pipeline and quicklook software for the IRIS instrument suite.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the orbital motion of the Quintuplet cluster near the Galactic center with the aim of constraining formation scenarios of young, massive star clusters in nuclear environments. Three epochs of adaptive optics high-angular resolution imaging with the Keck/NIRC2 and Very Large Telescope/NAOS-CONICA systems were obtained over a time baseline of 5.8 yr, delivering an astrometric accuracy of 0.5-1 mas yr–1. Proper motions were derived in the cluster reference frame and were used to distinguish cluster members from the majority of the dense field star population toward the inner bulge. Fitting the cluster and field proper motion distributions with two-dimensional (2D) Gaussian models, we derive the orbital motion of the cluster for the first time. The Quintuplet is moving with a 2D velocity of 132 ± 15 km s–1 with respect to the field along the Galactic plane, which yields a three-dimensional orbital velocity of 167 ± 15 km s–1 when combined with the previously known radial velocity. From a sample of 119 stars measured in three epochs, we derive an upper limit to the velocity dispersion of σ1D < 10 km s–1 in the core of the Quintuplet cluster. Knowledge of the three velocity components of the Quintuplet allows us to model the cluster orbit in the potential of the inner Galaxy. Under the assumption that the Quintuplet is located in the central 200 pc at the present time, these simulations exclude the possibility that the cluster is moving on a circular orbit. Comparing the Quintuplet's orbit with our earlier measurements of the Arches' orbit, we discuss the possibility that both clusters originated in the same area of the central molecular zone (CMZ). According to the model of Binney et al., two families of stable cloud orbits are located along the major and minor axes of the Galactic bar, named x1 and x2 orbits, respectively. The formation locus of these clusters is consistent with the outermost x2 orbit and might hint at cloud collisions at the transition region between the x1 and x2 orbital families located at the tip of the minor axis of the Galactic bar. The formation of young, massive star clusters in circumnuclear rings is discussed in the framework of the channeling in of dense gas by the bar potential. We conclude that the existence of a large-scale bar plays a major role in supporting ongoing star and cluster formation, not only in nearby spiral galaxies with circumnuclear rings, but also in the Milky Way's CMZ.
    The Astrophysical Journal 06/2014; 789(2):115. · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present new high-resolution observations and panchromatic modeling of SSTTau J042021+281349, a 400AU-radius edge-on protoplanetary disk located in the Taurus star-forming region. This object is part of a larger Hubble Space Telescope Cycle 19 program to image new Spitzer-selected candidate edge-on disks. The unique orientation of edge-on protoplanetary disks enables detailed analyses of their vertical structure as well as of their dust properties. We have gathered high-resolution visible and near-infrared scattered light images of the system with the Hubble Space Telescope and adaptive optics system on the Keck II telescope, as well as high-resolution millimeter thermal emission maps with CARMA. Compared to the well-known HH 30 edge-on protoplanetary disk, the SSTTau J042021+281349 system is particularly remarkable because of its spectacular bipolar jet and the extremely high degree of lateral symmetry of the disk. Indeed, this system is a "cleaner" prototype for this category of disks. We also discuss the origin of diffuse scattered light well above the disk midplane, which could be related to a large-scale disk wind entraining small dust grains. Arguably the most remarkable feature of this disk is the apparent achromaticity of dust opacity from the visible to the near-infrared, which suggests that it is in an advanced stage of dust evolution. Our modeling aims at reproducing simultaneously all of these datasets, as well as the Spitzer- and Herschel-populated spectral energy distribution of the system, constraining the disk geometry and constituent dust properties in a self-consistent approach. We build on similar analyses conducted on other edge-on disks to place this object in the overall scheme of protoplanetary disk evolution.
    Proceedings of the International Astronomical Union 06/2014; 8(S299).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of the two-dimensional structure of the radio source associated with the Galactic Center black hole, Sagittarius A*, obtained from Very Long Baseline Array (VLBA) observations at a wavelength of 7mm. The intrinsic source is modeled as an elliptical Gaussian with major axis size 35.4 x 12.6 R_S in position angle 95 deg East of North. This morphology can be interpreted in the context of both jet and accretion disk models for the radio emission. There is supporting evidence in large angular-scale multi-wavelength observations for both source models for a preferred axis near 95 deg. We also place a maximum peak-to-peak change of 15% in the intrinsic major axis size over five different epochs. Three observations were triggered by detection of near infrared (NIR) flares and one was simultaneous with a large X-ray flare detected by NuSTAR. The absence of simultaneous and quasi-simultaneous flares indicates that not all high energy events produce variability at radio wavelengths. This supports the conclusion that NIR and X-ray flares are primarily due to electron excitation and not to an enhanced accretion rate onto the black hole.
    The Astrophysical Journal 05/2014; 790(1). · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of the two-dimensional structure of the radio source associated with the Galactic Center black hole, Sagittarius A*, obtained from Very Long Baseline Array (VLBA) observations at a wavelength of 7mm. The intrinsic source is modeled as an elliptical Gaussian with major axis size 35.4 x 12.6 R_S in position angle 95 deg East of North. This morphology can be interpreted in the context of both jet and accretion disk models for the radio emission. There is supporting evidence in large angular-scale multi-wavelength observations for both source models for a preferred axis near 95 deg. We also place a maximum peak-to-peak change of 15% in the intrinsic major axis size over five different epochs. Three observations were triggered by detection of near infrared (NIR) flares and one was simultaneous with a large X-ray flare detected by NuSTAR. The absence of simultaneous and quasi-simultaneous flares indicates that not all high energy events produce variability at radio wavelengths. This supports the conclusion that NIR and X-ray flares are primarily due to electron excitation and not to an enhanced accretion rate onto the black hole.
    04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a search for companions to young brown dwarfs in the Taurus and Chamaeleon I star forming regions (1/2-3 Myr). We have used WFPC2 on board HST to obtain F791W and F850LP images of 47 members of these regions that have spectral types of M6-L0 (0.01-0.1 Msun). An additional late-type member of Taurus, FU Tau (M7.25+M9.25), was also observed with adaptive optics at Keck Observatory. We have applied PSF subtraction to the primaries and have searched the resulting images for objects that have colors and magnitudes that are indicative of young low-mass objects. Through this process, we have identified promising candidate companions to 2MASS J04414489+2301513 (rho=0.105"/15 AU), 2MASS J04221332+1934392 (rho=0.05"/7 AU), and ISO 217 (rho=0.03"/5 AU). We reported the discovery of the first candidate in a previous study, showing that it has a similar proper motion as the primary through a comparison of astrometry measured with WFPC2 and Gemini adaptive optics. We have collected an additional epoch of data with Gemini that further supports that result. By combining our survey with previous high-resolution imaging in Taurus, Chamaeleon, and Upper Sco (10 Myr), we measure binary fractions of 14/93 = 0.15+0.05/-0.03 for M4-M6 (0.1-0.3 Msun) and 4/108 = 0.04+0.03/-0.01 for >M6 (<0.1 Msun) at separations of >10 AU. Given the youth and low density of these three regions, the lower binary fraction at later types is probably primordial rather than due to dynamical interactions among association members. The widest low-mass binaries (>100 AU) also appear to be more common in Taurus and Chamaeleon than in the field, which suggests that the widest low-mass binaries are disrupted by dynamical interactions at >10 Myr, or that field brown dwarfs have been born predominantly in denser clusters where wide systems are disrupted or inhibited from forming.
    The Astrophysical Journal 04/2014; 788(1). · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 um flux is observed from a source associated with SgrA*, and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works with conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available VLT data have been merged, we show that SgrA* is sufficiently described by a single intrinsic state. However the observed flux densities exhibit two states: a noise-dominated and a source-dominated one. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.
    The Astrophysical Journal 03/2014; 791(1). · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new kinematic measurements and modeling of a sample of 116 young stars in the central parsec of the Galaxy in order to investigate the properties of the young stellar disk. The measurements were derived from a combination of speckle and laser guide star adaptive optics imaging and integral field spectroscopy from the Keck telescopes. Compared to earlier disk studies, the most important kinematic measurement improvement is in the precision of the accelerations in the plane of the sky, which have a factor of six smaller uncertainties (~10 uas/yr/yr). We have also added the first radial velocity measurements for 8 young stars, increasing the sample at the largest radii (6"-12") by 25%. We derive the ensemble properties of the observed stars using Monte-Carlo simulations of mock data. There is one highly significant kinematic feature (~20 sigma), corresponding to the well-known clockwise disk, and no significant feature is detected at the location of the previously claimed counterclockwise disk. The true disk fraction is estimated to be ~20%, a factor of ~2.5 lower than previous claims, suggesting that we may be observing the remnant of what used to be a more densely populated stellar disk. The similarity in the kinematic properties of the B stars and the O/WR stars suggests a common star formation event. The intrinsic eccentricity distribution of the disk stars is unimodal, with an average value of = 0.27 +/- 0.07, which we show can be achieved through dynamical relaxation in an initially circular disk with a moderately top-heavy mass function.
    The Astrophysical Journal 01/2014; 783(2). · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present observations and analysis of G2 - the gaseous red emission-line object that is fast approaching the central black hole on a very eccentric orbit. The laser guide star Adaptive Optics systems on the W. M. Keck I and II telescopes were used to obtained spectroscopy and imaging at the highest spatial resolution. We present the orbital solution derived from radial velocities in addition to Br-γ line astrometry, which we show is more accurate than L' astrometry. We argue that although there is clearly gas associated with it, it seems more likely that the source is ultimately stellar in nature. Since in this case the potential impact on SgrA*'s accretion flow could be very subtle, we present a statistical analysis that can identify non-obvious variability state changes. This statistical framework has been taken from mathematical finance as is applied to light curves from the Galactic center black hole for the first time.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We give an update of the observations and analysis of G2 - the gaseous red emission-line object that is on a very eccentric orbit around the Galaxy's central black hole and predicted to come within 2400 Rs in early 2014. During 2013, the laser guide star adaptive optics systems on the W. M. Keck I and II telescopes were used to obtain three epochs of spectroscopy and imaging at the highest spatial resolution currently possible in the near-IR. The updated orbital solution derived from radial velocities in addition to Br-Gamma line astrometry is consistent with our earlier estimates. Strikingly, even ~6 months before pericenter passage there is no perceptible deviation from a Keplerian orbit. We furthermore show that a proposed "tail" of G2 is likely not associated with it but is rather an independent gas structure. We also show that G2 does not seem to be unique, since several red emission-line objects can be found in the central arcsecond. Taken together, it seems more likely that G2 is ultimately stellar in nature, although there is clearly gas associated with it.
    Proceedings of the International Astronomical Union 12/2013; 9(S303).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present 3D kinematic observations of stars within the central 0.5 pc of the Milky Way nuclear star cluster using adaptive optics imaging and spectroscopy from the Keck telescopes. Recent observations have shown that the cluster has a shallower surface density profile than expected for a dynamically relaxed cusp, leading to important implications for its formation and evolution. However, the true three dimensional profile of the cluster is unknown due to the difficulty in de-projecting the stellar number counts. Here, we use spherical Jeans modeling of individual proper motions and radial velocities to constrain for the first time, the de-projected spatial density profile, cluster velocity anisotropy, black hole mass ($M_\mathrm{BH}$), and distance to the Galactic center ($R_0$) simultaneously. We find that the inner stellar density profile of the late-type stars, $\rho(r)\propto r^{-\gamma}$ to have a power law slope $\gamma=0.05_{-0.60}^{+0.29}$, much more shallow than the frequently assumed Bahcall $\&$ Wolf slope of $\gamma=7/4$. The measured slope will significantly affect dynamical predictions involving the cluster, such as the dynamical friction time scale. The cluster core must be larger than 0.5 pc, which disfavors some scenarios for its origin. Our measurement of $M_\mathrm{BH}=5.76_{-1.26}^{+1.76}\times10^6$ $M_\odot$ and $R_0=8.92_{-0.55}^{+0.58}$ kpc is consistent with that derived from stellar orbits within 1$^{\prime\prime}$ of Sgr A*. When combined with the orbit of S0-2, the uncertainty on $R_0$ is reduced by 30% ($8.46_{-0.38}^{+0.42}$ kpc). We suggest that the MW NSC can be used in the future in combination with stellar orbits to significantly improve constraints on $R_0$.
    The Astrophysical Journal 11/2013; 779(1). · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the expected astrometric performance of the Thirty Meter Telescope's InfraRed Imaging Spectrometer (IRIS) as determined using simulated images of the Galactic center. This region of the Galaxy harbors a supermassive black hole and a dense nuclear stellar cluster, thus providing an ideal laboratory for testing crowded-field astrometry with the IRIS imager. Understanding the sources of astrometric error is also important for making precision measurements of the short-period stars orbiting the supermassive black hole in order to probe the curvature of space-time as predicted by General Relativity. Various sources of error are investigated, including read-out and photon noise, spatially variable point spread functions, confusion, static distortion for the IRIS imager, and the quadratic probe arm distortion. Optical distortion is the limiting source of error for bright stars (K < 15), while fainter sources will be limited by the effects of source confusion. A detailed astrometric error budget for the Galactic center science case is provided.
    10/2013;

Publication Stats

6k Citations
729.57 Total Impact Points

Institutions

  • 2014
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
    • Wellesley College
      Wellesley, Massachusetts, United States
  • 1970–2014
    • University of California, Los Angeles
      • • Department of Physics and Astronomy
      • • Division of Astronomy & Astrophysics
      Los Ángeles, California, United States
  • 2012
    • Indiana University Bloomington
      • Department of Astronomy
      Bloomington, Indiana, United States
  • 2001–2010
    • Lawrence Livermore National Laboratory
      Livermore, California, United States
  • 1992–2007
    • California Institute of Technology
      Pasadena, California, United States
  • 2005
    • Pennsylvania State University
      • Department of Astronomy and Astrophysics
      University Park, Maryland, United States
  • 2004
    • W. M. Keck Observatory
      Hilo, Hawaii, United States
  • 2002
    • University of California, Berkeley
      • Department of Astronomy
      Berkeley, California, United States
  • 1994
    • The University of Arizona
      • Department of Astronomy
      Tucson, Arizona, United States