Are you Yusuke Yamauchi?

Claim your profile

Publications (3)11.92 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO) and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca2+ concentration ([Ca2+]i) is important for microglial functions, such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. Results: In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca2+]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca2+ elevation. Immunocytochemical technique and flowcytometry also revealed that BDNF rapidly upregulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca2+ elevation through the upregulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. Conclusions: We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses, and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders.
    Journal of Biological Chemistry 05/2014; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Psychiatric disorders have long and dominantly been regarded to be induced by disturbances of neuronal networks including synapses and neurotransmitters. Thus, the effects of psychotropic drugs such as antipsychotics and antidepressants have been understood to modulate synaptic regulation via receptors and transporters of neurotransmitters such as dopamine and serotonin. Recently, microglia, immunological/inflammatory cells in the brain, have been indicated to have positive links to psychiatric disorders. Positron emission tomography (PET) imaging and postmortem studies have revealed microglial activation in the brain of neuropsychiatric disorders such as schizophrenia, depression and autism. Animal models of neuropsychiatric disorders have revealed the underlying microglial pathologies. In addition, various psychotropic drugs have been suggested to have direct effects on microglia. Until now, the relationship between microglia, neurotransmitters and psychiatric disorders has not well been understood. Therefore, in this review, at first, we summarize recent findings of interaction between microglia and neurotransmitters such as dopamine, serotonin, norepinephrine, acetylcholine and glutamate. Next, we introduce up-to-date knowledge of the effects of psychotropic drugs such as antipsychotics, antidepressants and antiepileptics on microglial modulation. Finally, we propose the possibility that modulating microglia may be a key target in the treatment of various psychiatric disorders. Further investigations and clinical trials should be conducted to clarify this perspective, using animal in vivo studies and imaging studies with human subjects.
    Current Medicinal Chemistry 11/2012; · 3.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An accumulating body of evidence point to the significance of neuroinflammation and immunogenetics also in schizophrenia. Recent genome-wide studies in schizophrenia suggest immune involvement in schizophrenia. Microglia are the resident macrophage of the brain and major players in innate immunity in the CNS. They respond rapidly to even minor pathological changes in the brain and may contribute directly to the neuronal degeneration by producing various pro-inflammatory cytokines and free radicals. In many aspects, the neuropathology of schizophrenia is closely associated with microglial activation. We and other researchers have shown the inhibitory effects of some typical or atypical antipsychotics on the release of inflammatory cytokines and free radicals from activated microglia, both of which are not only directly toxic to neurons but also cause a decrease in neurogenesis as well as white matter abnormalities in the brains of the patients with schizophrenia. The treatment through the inhibition of microglial activation may shed new light on the therapeutic strategy of schizophrenia.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 12/2011; · 3.55 Impact Factor