Catherine Huang

Columbia University, New York City, New York, United States

Are you Catherine Huang?

Claim your profile

Publications (2)11.18 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor-associated macrophages (TAMs) play essential roles in tumor progression and metastasis. Tumor cells recruit myeloid progenitors and monocytes to the tumor site, where they differentiate into TAMs; however, this process is not well studied in humans. Here we show that human CD7, a T cell and NK cell receptor, is highly expressed by monocytes and macrophages. Expression of CD7 decreases in M-CSF differentiated macrophages and in Melanoma-conditioned Medium Induced Macrophages (MCMI/Mφ) in comparison to monocytes. A ligand for CD7, SECTM1 (Secreted and transmembrane protein 1), is highly expressed in many tumors, including melanoma cells. We show that SECTM1 binds to CD7 and significantly increases monocyte migration by activation of the PI3K pathway. In human melanoma tissues, tumor-infiltrating macrophages expressing CD7 are present. These melanomas, with CD7-positive inflammatory cell infiltrations, frequently highly express SECTM1, including an N-terminal, soluble form, which can be detected in the sera of metastatic melanoma patients but not in normal sera. Taken together, our data demonstrate that CD7 is present on monocytes and tumor macrophages, and that its ligand, SECTM1, is frequently expressed in corresponding melanoma tissues, possibly acting as a chemoattractant for monocytes to modulate the melanoma microenvironment.Journal of Investigative Dermatology accepted article preview online, 24 October 2013; doi:10.1038/jid.2013.437.
    Journal of Investigative Dermatology 10/2013; · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD7 is a cell-surface molecule, expressed on T lymphocytes and NK cells, which functions as a costimulatory receptor for T cell proliferation. SECTM1 has been proposed as a ligand for CD7. However, the expression pattern of this molecule in human immune cells and role in human T cell function remain unclear. In the present study, using human rSECTM1, we demonstrate that SECTM1 strongly costimulates CD4 and CD8 T cell proliferation and induces IFN-γ production, likely via a CD7-dependent mechanism. In addition, SECTM1 synergizes with suboptimal anti-CD28 to strongly augment T cell functions. We found a robust induction of IL-2 production when SECTM1 and anti-CD28 signals were present with TCR ligation. Furthermore, addition of SECTM1 into a MLR significantly enhanced proliferation of alloantigen-activated T cells, whereas blockade of SECTM1 inhibited T cell proliferation in a two-way MLR assay. Simultaneously blocking the effect of SECTM1, along with CTLA-4/Fc, diminishes two-way MLR. Finally, we demonstrated that expression of SECTM1 is not detected in monocytes and imMoDCs at the protein level. However, it is strongly induced by IFN-γ in monocytes and imMoDCs, and this induction is STAT1-dependent. These results indicate that SECTM1 is a broadly expressed, IFN-γ-inducible molecule, which functions as a potent costimulatory ligand for T cell activation and is synergistic with anti-CD28.
    Journal of leukocyte biology 12/2011; 91(3):449-59. · 4.99 Impact Factor