Are you Alexander R Macalalad?

Claim your profile

Publications (4)23.76 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.
    PLoS Pathogens 03/2012; 8(3):e1002529. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viruses diversify over time within hosts, often undercutting the effectiveness of host defenses and therapeutic interventions. To design successful vaccines and therapeutics, it is critical to better understand viral diversification, including comprehensively characterizing the genetic variants in viral intra-host populations and modeling changes from transmission through the course of infection. Massively parallel sequencing technologies can overcome the cost constraints of older sequencing methods and obtain the high sequence coverage needed to detect rare genetic variants (< 1%) within an infected host, and to assay variants without prior knowledge. Critical to interpreting deep sequence data sets is the ability to distinguish biological variants from process errors with high sensitivity and specificity. To address this challenge, we describe V-Phaser, an algorithm able to recognize rare biological variants in mixed populations. V-Phaser uses covariation (i.e. phasing) between observed variants to increase sensitivity and an expectation maximization algorithm that iteratively recalibrates base quality scores to increase specificity. Overall, V-Phaser achieved > 97% sensitivity and > 97% specificity on control read sets. On data derived from a patient after four years of HIV-1 infection, V-Phaser detected 2,015 variants across the -10 kb genome, including 603 rare variants (< 1% frequency) detected only using phase information. V-Phaser identified variants at frequencies down to 0.2%, comparable to the detection threshold of allele-specific PCR, a method that requires prior knowledge of the variants. The high sensitivity and specificity of V-Phaser enables identifying and tracking changes in low frequency variants in mixed populations such as RNA viruses.
    PLoS Computational Biology 03/2012; 8(3):e1002417. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of HIV-1 and other highly variable pathogens to rapidly mutate to escape vaccine-induced immune responses represents a major hurdle to the development of effective vaccines to these highly persistent pathogens. Application of next-generation or deep sequencing technologies to the study of host pathogens could significantly improve our understanding of the mechanisms by which these pathogens subvert host immunity, and aid in the development of novel vaccines and therapeutics. Here, we developed a 454 deep sequencing approach to enable the sensitive detection of low-frequency viral variants across the entire HIV-1 genome. When applied to the acute phase of HIV-1 infection we observed that the majority of early, low frequency mutations represented viral adaptations to host cellular immune responses, evidence of strong host immunity developing during the early decline of peak viral load. Rapid viral escape from the most dominant immune responses however correlated with loss of this initial vira
    PLoS Pathog. 01/2012; 8(3):e1002529-e1002529.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rapid spread of dengue is a worldwide public health problem. In two clinical studies of dengue in Managua, Nicaragua, we observed an abrupt increase in disease severity across several epidemic seasons of dengue virus serotype 2 (DENV-2) transmission. Waning DENV-1 immunity appeared to increase the risk of severe disease in subsequent DENV-2 infections after a period of cross-protection. The increase in severity coincided with replacement of the Asian/American DENV-2 NI-1 clade with a new virus clade, NI-2B. In vitro analyses of viral isolates from the two clades and analysis of viremia in patient blood samples support the emergence of a fitter virus in later, relative to earlier, epidemic seasons. In addition, the NI-1 clade of viruses was more virulent specifically in children who were immune to DENV-1, whereas DENV-3 immunity was associated with more severe disease among NI-2B infections. Our data demonstrate that the complex interaction between viral genetics and population dynamics of serotype-specific immunity contributes to the risk of severe dengue disease. Furthermore, this work provides insights into viral evolution and the interaction between viral and immunological determinants of viral fitness and virulence.
    Science translational medicine 12/2011; 3(114):114ra128. · 10.76 Impact Factor