Tetsuya Taketsugu

Kyoto University, Kioto, Kyōto, Japan

Are you Tetsuya Taketsugu?

Claim your profile

Publications (163)558.14 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The significance of kinetic analysis as a tool for understanding the reactivity and selectivity of organic reactions has recently been recognized. However, conventional simulation approaches that solve rate equations numerically are not amenable to multistep reaction profiles consisting of fast and slow elementary steps. Herein, we present an efficient and robust approach for evaluating the overall rate constants of multistep reactions via the recursive contraction of the rate equations to give the overall rate constants for the products and byproducts. This new method was applied to the Claisen rearrangement of allyl vinyl ether, as well as a substituted allyl vinyl ether. Notably, the profiles of these reactions contained 23 and 84 local minima, and 66 and 278 transition states, respectively. The overall rate constant for the Claisen rearrangement of allyl vinyl ether was consistent with the experimental value. The selectivity of the Claisen rearrangement reaction has also been assessed using a substituted allyl vinyl ether. The results of this study showed that the conformational entropy in these flexible chain molecules had a substantial impact on the overall rate constants. This new method could therefore be used to estimate the overall rate constants of various other organic reactions involving flexible molecules.
    The Journal of Physical Chemistry A 11/2015; DOI:10.1021/acs.jpca.5b09447 · 2.69 Impact Factor
  • Yu Harabuchi · Yuriko Ono · Satoshi Maeda · Tetsuya Taketsugu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The existence of a valley-ridge transition (VRT) point along the intrinsic reaction coordinate does not always indicate the existence of two minima in the product side, but VRT is a sign of bifurcating nature of dynamical trajectories running on the potential energy surface. It is demonstrated by molecular dynamics simulations.
    The Journal of Chemical Physics 11/2015; 143(17):177102. DOI:10.1063/1.4935182 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new type of reaction pathway which involves a nontotally symmetric trifurcation was found and investigated for a typical SN 2-type reaction, NC(-) + CH3 X → NCCH3 + X(-) (X = F, Cl). A nontotally symmetric valley-ridge inflection (VRI) point was located along the C3 v reaction path. For X = F, the minimum energy path (MEP) starting from the transition state (TS) leads to a second-order saddle point with C3 v symmetry, which connects three product minima of Cs symmetry. For X = Cl, four product minima have been observed, of which three belong to Cs symmetry and one to C3 v symmetry. The branching path from the VRI point to the lower symmetry minima was determined by a linear interpolation technique. The branching mechanism is discussed based on the reaction path curvature and net atomic charges, and the possibility of a nonotally symmetric n-furcation is discussed. © 2015 Wiley Periodicals, Inc.
    Journal of Computational Chemistry 10/2015; DOI:10.1002/jcc.24241 · 3.59 Impact Factor
  • Masato Kobayashi · Tetsuya Taketsugu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2005, Surján showed two explicit formulas for evaluating the second-order Møller–Plesset perturbation (MP2) energy as a functional of the Hartree–Fock density matrix $$\varvec{D}$$D (Chem Phys Lett 406:318, 2005), which are referred to as the $$\Delta E_\text {MP2}[\varvec{D}]$$ΔEMP2[D] functionals. In this paper, we present the finite-temperature (FT) MP2 energy functionals of the FT Hartree–Fock density matrix. There are also two formulas for the FT-MP2, namely the conventional and renormalized ones; the latter of which has recently been formulated by Hirata and He (J Chem Phys 138:204112, 2013). We proved that there exists one-to-one correspondence between the formulas of two FT-MP2 and the $$\Delta E_\text {MP2}[\varvec{D}]$$ΔEMP2[D] functionals. This fact can explain the different behavior of two $$\Delta E_\text {MP2}[\varvec{D}]$$ΔEMP2[D] functionals when an approximate Hartree–Fock density matrix is applied, which was previously investigated by Kobayashi and Nakai (Chem Phys Lett 420:250, 2006). We also applied the FT-MP2 formalisms to the linear-scaling divide-and-conquer method for improving the accuracy with tiny addition of the computational efforts.
    Theoretical Chemistry Accounts 09/2015; 134(9). DOI:10.1007/s00214-015-1710-y · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enhanced luminescence properties of mononuclear lanthanide complexes with asymmetric seven-coordination structures are reported for the first time. The lanthanide complexes are composed of a lanthanide ion (EuIII or TbIII), three tetramethyl heptanedionato ligands, and one triphenylphosphine oxide ligand. The coordination geometries of the lanthanide complexes have been evaluated by using single-crystal X-ray analyses and shape-measurement calculations. The complexes are categorized to be seven-coordinate monocapped octahedral structures (point group C3v). The seven-coordinate lanthanide complexes show high intrinsic emission quantum yields, extra-large radiative rate constants, and unexpected small nonradiative rate constants. The brilliant luminescence properties have been elucidated in terms of the asymmetric coordination geometry and small vibrational quanta related to thermal relaxation.
    Berichte der deutschen chemischen Gesellschaft 09/2015; 2015(28). DOI:10.1002/ejic.201500820 · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bottom-up strategies can be effectively implemented for the fabrication of atomically precise graphene nanoribbons. Recently, using 10-10'-dibromo-9-9'-bianthracene (DBBA) as a molecular precursor to grow armchair nanoribbons on Au(111) and Cu(111), we have shown that substrate activity considerably affects the dynamics of ribbon formation, nonetheless without significant modifications in the growth mechanism. In this paper we compare the on-surface reaction pathways for DBBA molecules on Cu(111) and Cu(110). Evolution of both systems has been studied via a combination of core-level X-ray spectroscopies, scanning tunneling microscopy and theoretical calculations. Experimental and theoretical results reveal a significant increase in reactivity for the open and anisotropic Cu(110) surface in comparison with the close-packed Cu(111). This increased reactivity results in a predominance of the molecular-substrate interaction over the intermolecular one, which has a critical impact on the transformations of DBBA on Cu(110). Unlike DBBA on Cu(111), the Ullmann coupling cannot be realized for DBBA/Cu(110) and the growth of nanoribbons via this mechanism is blocked. Instead, annealing of DBBA on Cu(110) at 250 ˚C results in the formation of a new structure - quasi-zero-dimensional flat nanographenes. Each nanographene unit has dehydrogenated zigzag edges bonded to the underlying Cu rows and oriented with the hydrogen-terminated armchair edge parallel to the [1-10] direction. Strong bonding of nanographene to the substrate manifests itself in high adsorption energy of -12.7 eV and significant charge transfer of 3.46 e from the copper surface. Nanographene units coordinated with bromine adatoms are able to arrange in highly regular arrays potentially suitable for nanotemplating.
    ACS Nano 08/2015; 9(9):8997-9011. DOI:10.1021/acsnano.5b03280 · 12.88 Impact Factor
  • Yu Harabuchi · Tetsuya Taketsugu · Satoshi Maeda ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Minimum energy conical intersection (MECI) geometries were searched for polycyclic aromatic hydrocarbons (PAHs) consisting of up to 26 atoms. The energy barriers to the obtained MECIs showed a correlation with their fluorescence quantum yields. This provides a theoretical rationale for the size dependence of the fluorescence quantum yields seen in these PAHs.
    Physical Chemistry Chemical Physics 07/2015; 17(35). DOI:10.1039/C5CP02103K · 4.49 Impact Factor
  • Yu Harabuchi · Yuriko Ono · Satoshi Maeda · Tetsuya Taketsugu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: A global reaction route map is generated for Au 5 by the anharmonic downward distortion following method in which 5 minima and 14 transition states (TSs) are located. Through vibrational analyses in the 3N − 7 (N = 5) dimensional space orthogonal to the intrinsic reaction coordinate (IRC), along all the IRCs, four IRCs are found to have valley-ridge transition (VRT) points on the way where a potential curvature changes its sign from positive to negative in a direction orthogonal to the IRC. The detailed mechanisms of bifurcations related to the VRTs are discussed by surveying a landscape of the global reaction route map, and the connectivity of VRT points and minima is clarified. Branching of the products through bifurcations is confirmed by ab initio molecular dynamics simulations starting from the TSs. A new feature of the reaction pathways, unification, is found and discussed.
    The Journal of Chemical Physics 07/2015; 143(1):014301. DOI:10.1063/1.4923163 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using 42-nm high harmonic pulses, the dissociation dynamics of 1,2-butadiene was investigated by time-resolved photoelectron spectroscopy (TRPES), enabling us to observe dynamical changes of multiple molecular orbitals (MOs) with higher temporal resolution than conventional light sources. Since each lower-lying occupied MO has particular spatial electron distribution, the structural dynamics of photochemical reaction can be revealed. On the femtosecond timescale, a short-lived excited state with a lifetime of 37 ± 15 fs and the coherent oscillation of the photoelectron yield stimulated by Hertzberg-Teller coupling were observed. Ab initio molecular dynamics simulations in the electronically excited state find three relaxation pathways from the vertically excited structure in S1 to the ground state and one of them is the dominant relaxation pathway, observed as the short-lived excited state. On the picosecond timescale, the photoelectron yields related to the C−C bond decreased upon photoexcitation, indicating C−C bond cleavage.
    Journal of Physical Chemistry Letters 06/2015; 6(13):150611091612000. DOI:10.1021/acs.jpclett.5b00943 · 7.46 Impact Factor
  • Source
    Ryohei Uematsu · Eiji Yamamoto · Satoshi Maeda · Hajime Ito · Tetsuya Taketsugu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Theoretical and experimental studies have been conducted to elucidate the mechanism of the formal nucleophilic boryl substitution of aryl- and alkyl bromides with silylborane in the presence of potassium methoxide. Density functional theory was used in conjunction with the artificial force induced reaction method in the current study to determine the mechanism of this reaction. The results of this analysis led to the identification of a unique carbanion-mediated mechanism involving the halogenophilic attack of a silyl nucleophile on the bromine atom of the substrate. These calculations have therefore provided a mechanistic rationale for this counterintuitive borylation reaction. Furthermore, the good functional group compatibility and high reactivity exhibited by this reaction towards sterically hindered substrates can be understood in terms of the low activation energy required for the reaction of the silyl nucleophile with the bromine atom of the substrate, and the subsequent rapid and selective consumption of the carbanion species by the in situ generated boron electrophile. The results of an experimental study involving the capture of the anion intermediate provided further evidence in support of the generation of a carbanion species during the course of this reaction. The anomalous formal nucleophilic borylation mechanism reported in this study could be used to provide new insights in silicon and boron chemistry.
    Journal of the American Chemical Society 03/2015; 137(12). DOI:10.1021/ja507675f · 12.11 Impact Factor
  • Keisuke Niimi · Tetsuya Taketsugu · Akira Nakayama ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The matrix shifts of the H-Xe stretching frequency of noble-gas hydrides, HXeCCH, HXeBr, and HXeI in various noble-gas matrices (in Ne, Ar, Kr, and Xe matrices) are investigated via the hybrid quantum-classical simulations. The order of the H-Xe stretching frequencies is found to be ν(gas) < ν(Ne) < ν(Xe) < ν(Kr) < ν(Ar) for HXeCCH and HXeBr, while it is ν(gas) < ν(Ne) < ν(Xe) < ν(Ar) < ν(Kr) for HXeI. This order is anomalous with respect to the matrix dielectric constants, and the calculated results reproduce the experimentally observed shifts quite successfully. We also find that the matrix shifts from the gas-phase values are Δν(HXeCCH) ≈ Δν(HXeCl) < Δν(HXeBr) < Δν(HXeI) in the same noble-gas matrix environments, which implies that the weakly bound molecules exhibit large matrix shifts. The local trapping site is analyzed in detail, and it is shown that a realistic modeling of the surrounding matrix environments is essential to describe the unusual matrix shifts accurately.
    Physical Chemistry Chemical Physics 02/2015; 17(12). DOI:10.1039/c5cp00568j · 4.49 Impact Factor
  • Source
    Satoshi Maeda · Tetsuya Taketsugu · Koichi Ohno · Keiji Morokuma ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The photodissociation of small molecules occurs upon irradiation by ultraviolet or visible light and it is a very important chemical process in Earth's atmosphere, the atmospheres of other planets, and in interstellar media. Photodissociation is an important method used to thoroughly investigate the fundamental issues of chemical reactivity. Photodissociation involves molecules and reaction fragments moving over ground and exited state potential surfaces (PESs). Molecules can move on a single PES (adiabatic pathway) and they can also cross over from one PES to another in nonadiabatic pathways. For a full theoretical understanding of a photodissociation mechanism, all the important nonadiabatic and adiabatic pathways must be determined. This is not an easy task. We have developed an efficient computational method referred to as the global reaction route mapping (GRRM) strategy that allows for a theoretical exploration of ground and excited state PESs and their crossing seams in an automatic manner. In this article, we summarize our approaches and present examples of the application together with newly determined chemical insights. These include the complex photodissociation mechanism of the formaldehyde H2CO molecule, the exclusive excited state roaming dynamics of the nitrate NO3 radical, and all product channels and conformational memory in the photodissociation of the formic acid HCOOH molecule. Finally, perspectives for the theoretical design of photofunctional molecules are discussed.
    Journal of the American Chemical Society 02/2015; 137(10). DOI:10.1021/ja512394y · 12.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Experimental and theoretical studies of HXeI and HXeH molecules in Ar, Kr, and Xe matrices are presented. HXeI exhibits the H-Xe stretching bands at 1238.0 and 1239.0 cm(-1) in Ar and Kr matrices, respectively, that are blue-shifted from the HXeI band observed in a Xe matrix (1193 cm(-1)) by 45 and 46 cm(-1). These shifts are larger than those observed previously for HXeCl (27 and 16 cm(-1)) and HXeBr (37 and 23 cm(-1)); thus, the matrix effect is stronger for less stable molecules. The results for HXeI are qualitatively different from all previous results on noble-gas hydrides with respect to the frequency order between Ar and Kr matrices. For previously studied HXeCl, HXeBr, and HXeCCH, the H-Xe stretching frequency is reliably (by >10 cm(-1)) higher in an Ar matrix than in a Kr matrix. In contrast, the H-Xe stretching frequency of HXeI in an Ar matrix is slightly lower than that in a Kr matrix. HXeH absorbs in Ar and Kr matrices at 1203.2 and 1192.1 cm(-1) (the stronger band for a Kr matrix), respectively. These bands are blue-shifted from the stronger band of HXeH in a Xe matrix (1166 cm(-1)) by 37 and 26 cm(-1), and this frequency order is the same as observed for HXeCl, HXeBr, and HXeCCH but different from HXeI. The present hybrid quantum-classical simulations successfully describe the main experimental findings. For HXeI in the 〈110〉 (double substitution) site, the order of the H-Xe stretching frequencies (ν(Xe) < ν(Ar) < ν(Kr)) is in accord with the experimental observations, and also the frequency shifts in Ar and Kr matrices from a Xe matrix are well predicted (30 and 34 cm(-1)). Both in the theory and experiment, the order of the H-Xe stretching frequencies differs from the case of HXeCl, which suggests the adequate theoretical description of the matrix effect. For HXeH in the 〈100〉 (single substitution) site, the order of the frequencies is ν(Xe) < ν(Kr) < ν(Ar), which also agrees with the experiments. The calculated frequency shifts for HXeH in Ar and Kr matrices with respect to a Xe matrix (36 and 23 cm(-1)) are in a good agreement with the experiments. The present calculations predict an increase of the H-Xe stretching frequencies in the noble-gas matrices with respect to vacuum.
    The Journal of Chemical Physics 02/2015; 142(5):054305. DOI:10.1063/1.4906875 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work present results of a systematic investigation of adsorption and dissociation of H2 on the neutral, positively, and negatively charged gold clusters Aunq (n = 2–11; q = 0, ±1) using the global reaction route mapping (GRRM) technique combined with the anharmonic downward distortion following (ADDF) and the artificial force-induced reaction (AFIR) methods. An exhaustive search for H2 dissociation pathways is performed not only on the most stable cluster structures but also on the large number of low-energy isomers, allowing structural transformations between them. The present strategy can automatically identify the structure-dependent lowest transition states (TS) for H2 dissociation with a systematic procedure in the regime of the structural fluxionality of gold clusters at finite temperature. Temperature effects, cluster isomerization, and influence of the charge state of gold clusters on H2 adsorption and dissociation are studied. It is demonstrated that the most stable structures of the gold clusters are not always highly reactive, and an ensemble of isomeric structures must be taken into account for adequate description of the reaction rates at finite temperatures. The proposed approach can serve as a promising tool for a systematic analysis and prediction of reactivity of small metal clusters.
    The Journal of Physical Chemistry C 01/2015; 119(20). DOI:10.1021/jp511913t · 4.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The enthalpies of formation for some selected oxygenates have been calculated by the atomisation energy approach using B3LYP, BHandHLYP, MPW3LYP, MPW1K, MPWB1K, BB1K, MPW1B95, BMK, and long-range corrected (LC-ωPBE, LC-BOP, LCgau-BOP, LC-BOP12, LCgau-B97) density functionals, as well as the composite CBS-QB3 method. Compared with experiment, BMK, LC-ωPBE, LCgau-BOP, LC-BOP12, LCgau-B97, MPW195, MPW3LYP functionals and CBS-QB3 give root mean square errors (RMSE) in enthalpies of formation no greater than 4 kcal/mol, whilst MPW1K and BHandHLYP show much worse performance (RMSE of 20–40 kcal/mol). The B3LYP, MPWB1K, and BB1K results fall between the two extremes. Energy barriers for the dominant paths in the unimolecular decomposition of simple esters (HCO2CH3, C2H5CO2C2H5), C1–C3 acids, and 1-butanol are reproduced well by CBS-QB3, BMK, BB1K, LCgau-B97, and PW1B95 (RMSE = 1–2 kcal/mol), while other LC methods (LC-ωPBE, LC-BOP, LCgau-BOP, and LC-BOP12) show a deviation of up to 4 kcal/mol. For the ionisation potentials, calculated from Koopman's theorem, all of the investigated LC-methods give good results compared with other density functional theory functionals with a maximum deviation of 0.4 eV, except for LCgau-B97, which has an RMSE of 0.7 eV.
    Molecular Physics 01/2015; 113(13):1-6. DOI:10.1080/00268976.2014.1002552 · 1.72 Impact Factor
  • Masato Kobayashi · Yusuke Kuroda · Kin-ya Akiba · Tetsuya Taketsugu ·

    Bulletin of the Chemical Society of Japan 01/2015; DOI:10.1246/bcsj.20150231 · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To expand the originally developed fluorescent 1,3a,6a-triazapentalenes as fluorescent labeling reagents, the fluorescence wavelength of 1,3a,6a-triazapentalene was extended to the red color region. Based on the noteworthy correlation of the fluorescence wavelength with the inductive effect of the 2-substituent, further electron-deficient 2-(2-cyano-4-methoxycarbonylphenyl)-1,3a,6a-triazapentalene and 2-(2,6-dicyano-4-methoxycarbonylphenyl)-1,3a,6a-triazapentalene were synthesized. The former exhibited yellow and the latter exhibited red fluorescence, and both compounds exhibited large Stokes shifts, and the 1,3a,6a-triazapentalene system enabled the same fluorescent chromophore to cover the entire region of visible wavelengths. The potential applications of the 1,3a,6a-triazapentalenes as fluorescent probes in the fields of the life sciences were investigated, and the 1,3a,6a-triazapentalene system was clearly proven to be useful as a fluorescent reagent for live cell imaging. Quantum chemical calculations were performed to investigate the optical properties of 1,3a,6a-triazapentalenes. These calculations revealed that the excitation involves a significant charge-transfer from the 1,3a,6a-triazapentalene skeleton to the 2-substituent. The calculated absorption and fluorescence wavelengths showed a good correlation with the experimental ones, and thus the system would enable the theoretical design of substituents with the desired optical properties.
    Chemical Science 10/2014; 6(2). DOI:10.1039/C4SC02780A · 9.21 Impact Factor
  • Satoshi Maeda · Yu Harabuchi · Tetsuya Taketsugu · Keiji Morokuma ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Locating accessible conical intersections (CIs), especially minimum energy CI (MECI) structures, near the Franck-Condon (FC) region is one of the most important tasks in theoretical analyses of photoreactions. Many MECIs may exist around a FC point in molecules with many vibrational degrees of freedom. Usually, MECIs are optimized one by one starting from arbitrary chosen initial structures. In order to eliminate the arbitrariness, we have developed automated MECI search methods. In this paper, a new approach is described. It combines the seam model function approach with the recently proposed single-component artificial force induced reaction method. Starting from a FC point, the present method finds MECIs systematically. It requires neither a Hessian nor a derivative coupling vector. In an example of the automated search, the spin-flip TDDFT was employed as an efficient electronic structure calculation method, which, together with an automated algorithm to recognize proper electronic states, allowed for evaluation of energy and gradient in a black-box fashion. The present approach was tested with trans- and cis-1,3-butadiene, thymine, and coumarin molecules. The usefulness of the present approach was demonstrated by comparing obtained MECIs with those in the literature. It is hoped that the present technique will be useful in exploration of unknown photoreaction pathways.
    The Journal of Physical Chemistry A 09/2014; 118(51). DOI:10.1021/jp507698m · 2.69 Impact Factor
  • Akira Nakayama · Shohei Yamazaki · Tetsuya Taketsugu ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The nonradiative deactivation pathways of cytosine derivatives (cytosine, 5-fluorocytosine, 5-methylcytosine, and 1-methycytosine) and their tautomers are investigated by quantum chemical calculations, and the substituent effects on the deactivation process are examined. The MS-CASPT2 method is employed in the excited-state geometry optimization and also in the search for conical intersection points, and the potential energy profiles connecting the Franck-Condon point, excited-state minimum energy structures, and the conical intersection points are investigated. Our calculated vertical and adiabatic excitation energies are in quite good agreement with experimental results, and the relative barrier heights leading to the conical intersections are correlated with the experimentally observed excite-state lifetimes, where the calculated barrier heights are in the order of cytosine < 5-methylcytosine < 5-fluorocytosine.
    The Journal of Physical Chemistry A 09/2014; 118(40). DOI:10.1021/jp506740r · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: On-the-fly dynamics simulations were carried out using spin-flip time dependent density functional theory (SF-TDDFT) to examine the photoisomerization and photocyclization mechanisms of cis-stilbene following excitation to the ππ* state. A state tracking method was devised to follow the target state among nearly degenerate electronic states during the dynamics simulations. The steepest descent path from the Franck-Condon structure of cis-stilbene in the ππ* state is shown to reach the S1-minimum of 4,4-dihydrophenanthrene (DHP) via a cis-stilbene-like structure (referred to as (S1)cis-min) on a very flat region of the S1-potential energy surface. From the dynamics simulations, the branching ratio of the photoisomerization is calculated as trans: DHP = 35: 13, in very good agreement with the experimental data, trans: DHP = 35: 10. The discrepancy between the steepest descent pathway and the significant trans-stilbene presence in the branching ratio observed experimentally and herein computationally is clarified from an analysis of geometrical features along the reaction pathway, as well as the low barrier of 0.1 eV for the pathway from (S1)cis-min to the twisted pyramidal structure on the S1-potential energy surface. It is concluded that ππ*-excited cis-stilbene propagates primarily toward the twisted structural region due to dynamic effects, with partial branching to the DHP structural region via the flat-surface region around (S1)cis-min.
    The Journal of Physical Chemistry A 09/2014; 118(51). DOI:10.1021/jp5072428 · 2.69 Impact Factor

Publication Stats

2k Citations
558.14 Total Impact Points


  • 2015
    • Kyoto University
      Kioto, Kyōto, Japan
  • 2005-2015
    • Hokkaido University
      • • Division of Chemistry
      • • Graduate School of Science
      Sapporo, Hokkaidō, Japan
  • 1999-2008
    • Ochanomizu University
      • • Department of Chemistry
      • • Graduate School of Humanities and Sciences
      Tōkyō, Japan
  • 2001-2002
    • University of Cambridge
      • Department of Chemistry
      Cambridge, England, United Kingdom
  • 1993-2001
    • The University of Tokyo
      • Department of Applied Chemistry
      Tōkyō, Japan
  • 1996
    • Iowa State University
      • Department of Chemistry
      Ames, Iowa, United States