J. Elliott

Max Planck Institute for Extraterrestrial Physics, Arching, Bavaria, Germany

Are you J. Elliott?

Claim your profile

Publications (55)119.24 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed to be the fuel of star formation. Moreover, optical spectroscopy of GRB afterglows implies that the molecular phase constitutes only a small fraction of the gas along the GRB line-of-sight. Here we report the first ever 21 cm line observations of GRB host galaxies, using the Australia Telescope Compact Array, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought, with star formation being potentially directly fuelled by atomic gas (or with very efficient HI-to-H2 conversion and rapid exhaustion of molecular gas), as has been theoretically shown to be possible. This can happen in low metallicity gas near the onset of star formation, because cooling of gas (necessary for star formation) is faster than the HI-to-H2 conversion. Indeed, large atomic gas reservoirs, together with low molecular gas masses, stellar and dust masses are consistent with GRB hosts being preferentially galaxies which have very recently started a star formation episode after accreting metal-poor gas from the intergalactic medium. This provides a natural route for forming GRBs in low-metallicity environments. The gas inflow scenario is also consistent with the existence of the companion HI object with no optical counterpart ~19 kpc from the GRB 060505 host, and with the fact that the HI centroids of the GRB 980425 and 060505 hosts do not coincide with optical centres of these galaxies, but are located close to the GRB positions.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Machine learning techniques offer a plethora of opportunities in tackling big data within the astronomical community. We present the set of Generalized Linear Models as a fast alternative for determining photometric redshifts of galaxies, a set of tools not commonly applied within astronomy, despite being widely used in other professions. With this technique, we achieve catastrophic outlier rates of the order of ~1%, that can be achieved in a matter of seconds on large datasets of size ~1,000,000. To make these techniques easily accessible to the astronomical community, we developed a set of libraries and tools that are publicly available.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decade there has been immense progress in the follow-up of short and long GRBs, resulting in a significant rise in the detection rate of X-ray and optical afterglows, in the determination of GRB redshifts, and of the identification of the underlying host galaxies. Nevertheless, our theoretical understanding on the progenitors and central engines powering these vast explosions is lagging behind, and a newly identified class of `ultra-long' GRBs has fuelled speculation on the existence of a new channel of GRB formation. In this paper we present high signal-to-noise X-shooter observations of the host galaxy of GRB130925A, which is the fourth unambiguously identified ultra-long GRB, with prompt gamma-ray emission detected for ~20ks. The GRB line of sight was close to the host galaxy nucleus, and our spectroscopic observations cover both this region along the bulge/disk of the galaxy, in addition to a bright star-forming region within the outskirts of the galaxy. From our broad wavelength coverage we obtain accurate metallicity and dust-extinction measurements at both the galaxy nucleus, and outer star-forming region, and measure a super-solar metallicity at both locations, placing this galaxy within the 10-20% most metal-rich GRB host galaxies. Such a high metal enrichment has implications on the progenitor models of both long and ultra-long GRBs, although the edge-on orientation of the host galaxy does not allow us to rule out a large metallicity variation along our line of sight. The spatially resolved spectroscopic data presented in this paper offer important insight into variations in the metal and dust abundance within GRB host galaxies. They also illustrate the need for IFU observations on a larger sample of GRB host galaxies at varies metallicities to provide a more quantitative view on the relation between the GRB circumburst and the galaxy-whole properties.
  • Source
    Astronomy and Astrophysics 05/2015; 577. DOI:10.1051/0004-6361/201321936 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using multi-epoch broad-band observations of the GRB 121024A afterglow, we measure the three characteristic break frequencies of the synchrotron spectrum. We use 6 epochs of combined XRT and GROND data to constrain the temporal slope, the dust extinction and the spectral slope with high accuracy. Two further epochs of combined data from XRT, GROND, APEX, CARMA and EVLA are used to set constraints on the break frequencies and therefore on the micro-physical and dynamical parameters. The XRT and GROND light curves show a simultaneous break at around 42 ks. No spectral evolution is observed between the afterglow SEDs before and after the break. As a result, the crossing of the synchrotron cooling break is not suitable as an explanation for the break in the light curve. The multi-wavelength data give us a unique opportunity to discern between two plausible scenarios explaining the break: the end of energy injection and a jet break. The observations are explained by two possible scenarios, a jet break and an energy injection model. The jet break model has been suggested by previous analysis of the observed linear and circular polarisation although it requires a flat electron spectrum, a very low cooling break and a non-spreading jet. The energy injection avoids an extremely flat spectrum for the shock-accelerated electrons, the very low cooling break frequency and the extreme prompt emission efficiency. However some atypical values for the micro-physics of particle acceleration arise in this model. It is consistent with the correlation between luminosity and end-time of the plateau in the light curve, reportedfrom large sample studies of XRT data.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After the discovery of the first connection between GRBs and SNe almost two decades ago, tens of SN-like rebrightenings have been discovered and about seven solid associations have been spectroscopically confirmed to date. Using GROND optical/NIR data and Swift X-ray/UV data, we estimate the intrinsic extinction, luminosity, and evolution of three SN rebrightenings in GRB afterglow light curves at z~0.5. The SNe 2008hw, 2009nz, and 2010ma exhibit 0.80, 1.15, and 1.78 times the optical (r band) luminosity of SN 1998bw, respectively. While SN 2009nz evolves similarly to SN 1998bw, SNe 2008hw and 2010ma show earlier peak times. The quasi-bolometric light curves were corrected for the contribution of the NIR bands using data available in the literature and blackbody fits. The large luminosity of SN 2010ma (1.4x10^43 erg/s) is confirmed, while SNe 2008hw and 2009nz reached a peak luminosity closer to SN 1998bw. Physical parameters of the SN explosions, such as synthesised nickel mass, ejecta mass, and kinetic energy, are estimated using Arnett's analytic approach, which resulted in nickel masses of around 0.4-0.5 Msun. By means of the a very comprehensive data set, we found that the luminosity and the nickel mass of SNe 2008hw, 2009nz, and 2010ma resembles those of other known GRB-associated SNe. This findings strengthens previous claims of GRB-SNe being brighter than type-Ic SNe unaccompanied by GRBs.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Machine learning techniques offer a precious tool box for use within astronomy to solve problems involving so-called big data. They provide a means to make accurate predictions about a particular system without prior knowledge of the underlying physical processes of the data. In this article, and the companion papers of this series, we present the set of Generalized Linear Models (GLMs) as a fast alternative method for tackling general astronomical problems, including the ones related to the machine learning paradigm. To demonstrate the applicability of GLMs to inherently positive and continuous physical observables, we explore their use in estimating the photometric redshifts of galaxies from their multi-wavelength photometry. Using the gamma family with a log link function we predict redshifts from the photo-z Accuracy Testing simulated catalogue and a subset of the Sloan Digital Sky Survey from Data Release 10. We obtain fits that result in catastrophic outlier rates as low as ~1% for simulated and ~2% for real data. Moreover, we can easily obtain such levels of precision within a matter of seconds on a normal desktop computer and with training sets that contain merely thousands of galaxies. Our software is made publicly available as an user-friendly package developed in Python, R and via an interactive web application. This software allows users to apply a set of GLMs to their own photometric catalogues and generates publication quality plots with minimum effort from the user. By facilitating their ease of use to the astronomical community, this paper series aims to make GLMs widely known and to encourage their implementation in future large-scale projects, such as the Large Synoptic Survey Telescope.
    09/2014; 10. DOI:10.1016/j.ascom.2015.01.002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first reported case of the simultaneous metallicity determination of a gamma-ray burst (GRB) host galaxy, from both afterglow absorption lines as well as strong emission-line diagnostics. Using spectroscopic and imaging observations of the afterglow and host of the long-duration GRB121024A at z = 2.30, we give one of the most complete views of a GRB host/environment to date. We observe a strong damped Ly-alpha absorber (DLA) with a hydrogen column density of log N(HI) = 21.80+/-0.15, H_2 absorption in the Lyman-Werner bands (molecular fraction of log(f) ~ -1.4; fourth solid detection of molecular hydrogen in a GRB-DLA), the nebular emission lines H-alpha, H-beta, [OII], [OIII] and [NII], as well as a large variety of metal absorption lines. We find a GRB host galaxy that is highly star-forming (SFR ~ 40 Msolar/yr), with a dust-corrected metallicity along the line of sight of [Zn/H]corr = -0.5+/-0.2 ([O/H] ~ -0.3 from emission lines), and a depletion factor of refractory elements of [Zn/Fe] = 0.85+/-0.04. The molecular gas is separated by 400 km/s from the gas that is excited by the GRB (implying a fairly massive host, in agreement with the derived stellar mass of log(Mstellar/Msolar) = 9.9+/-0.2). Including emission line analysis, we isolate and characterise three different gas-phases within the star-forming host galaxy. Our main result is that the metallicity determinations from both absorption and emission lines are consistent, which is encouraging for the comparison of GRB host metallicities at different redshifts.
    Monthly Notices of the Royal Astronomical Society 09/2014; 451(1). DOI:10.1093/mnras/stv960 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-duration gamma-ray bursts (LGRBs) are produced by the collapse of very massive stars. Due to the short lifetime of their progenitors, LGRBs pinpoint star-forming galaxies. We present here a multi-band search for the host galaxy of the long dark GRB 050219A within the enhanced Swift/XRT error circle. We used spectroscopic observations acquired with VLT/X-shooter to determine the redshift and star-formation rate of the putative host galaxy. We compared the results with the optical/IR spectral energy distribution obtained with different facilities. Surprisingly, the host galaxy is a old and quiescent early-type galaxy at z = 0.211 characterised by an unprecedentedly low specific star-formation rate. It is the first LGRB host to be also an early-type post-starburst galaxy. This is further evidence that GRBs can explode in all kind of galaxies, with the only requirement being an episode of star-formation.
    Astronomy and Astrophysics 08/2014; 572. DOI:10.1051/0004-6361/201423865 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long gamma-ray bursts (LGRBs) have been suggested as close tracers of the underlying star formation rate in the Universe. They could potentially be used to probe the cosmic star formation history (CSFH) with high accuracy due to their high luminosities. We utilise two cosmological simulations from the First Billion Years project to investigate the systematic biases between the CSFH and the LGRB rate at z>5. We populate LGRBs using a Monte-Carlo technique and a sub-selection based on environmental metallicity, progenitor stellar mass and age. Using a physically motivated LGRB progenitor model, we demonstrate that the LGRB rate should trace the CSFH to high redshifts z>5. The measured LGRB rate suggests that LGRBs have opening angles of 0.1 degrees, although the degeneracy with the progenitor model cannot rule out an underlying bias. We demonstrate that proxies that relate the LGRB rate with global LGRB host properties do not reflect the underlying LGRB environment, and are in fact a result of the host galaxy's spatial properties, such that LGRBs can easily exist in galaxies of solar metallicity. However, we find a sub-class of host galaxies that have low stellar mass and are metal-rich, to the extent that their metallicity dispersions would not allow low-metallicity environments. Detection of a host galaxy with this set of global properties would directly reflect the progenitor's environment without information on the progenitor's environment itself. We predict that 10% of LGRBs per year are associated with this subset of host galaxies. The forbidden line emission of these galaxies would be bright enough to be detected by instruments mounted on the James Webb Space Telescope. Such a discovery would place strong constraints on the collapsar model and suggest other avenues to be investigated, e.g., binary progenitor models.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prompt or early optical emission in gamma-ray bursts is notoriously difficult to measure, and observations of the dozen cases show a large variety of properties. Yet, such early emission promises to help us achieve a better understanding of the GRB emission process(es). We performed dedicated observations of the ultra-long duration (T90 about 7000 s) GRB 130925A in the optical/near-infrared with the 7-channel "Gamma-Ray Burst Optical and Near-infrared Detector" (GROND) at the 2.2m MPG/ESO telescope. We detect an optical/NIR flare with an amplitude of nearly 2 mag which is delayed with respect to the keV--MeV prompt emission by about 300--400 s. The decay time of this flare is shorter than the duration of the flare (500 s) or its delay. While we cannot offer a straightforward explanation, we discuss the implications of the flare properties and suggest ways toward understanding it.
    Astronomy and Astrophysics 07/2014; 568. DOI:10.1051/0004-6361/201424250 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A long and intense gamma-ray burst (GRB) was detected by INTEGRAL on July 11 2012 with a duration of ~115s and fluence of 2.8x10^-4 erg cm^-2 in the 20 keV-8 MeV energy range. GRB 120711A was at z~1.405 and produced soft gamma-ray emission (>20 keV) for at least ~10 ks after the trigger. The GRB was observed by several ground-based telescopes that detected a powerful optical flash peaking at an R-band brightness of ~11.5 mag at ~126 s after the trigger. We present a comprehensive temporal and spectral analysis of the long-lasting soft gamma-ray emission detected in the 20-200 keV band with INTEGRAL, the Fermi/LAT post-GRB detection above 100 MeV, the soft X-ray afterglow from XMM-Newton, Chandra, and Swift and the optical/NIR detections from Watcher, Skynet, GROND, and REM. We modelled the long-lasting soft gamma-ray emission using the standard afterglow scenario, which indicates a forward shock origin. The combination of data extending from the NIR to GeV energies suggest that the emission is produced by a broken power-law spectrum consistent with synchrotron radiation. The afterglow is well modelled using a stratified wind-like environment with a density profile k~1.2, suggesting a massive star progenitor (i.e. Wolf-Rayet). The analysis of the reverse and forward shock emission reveals an initial Lorentz factor of ~120-340, a jet half-opening angle of ~2deg-5deg, and a baryon load of ~10^-5-10^-6 Msun consistent with the expectations of the fireball model when the emission is highly relativistic. Long-lasting soft gamma-ray emission from other INTEGRAL GRBs with high peak fluxes, such as GRB 041219A, was not detected, suggesting that a combination of high Lorentz factor, emission above 100 MeV, and possibly a powerful reverse shock are required. Similar long-lasting soft gamma-ray emission has recently been observed from the nearby and extremely bright Fermi/LAT burst GRB 130427A.
    Astronomy and Astrophysics 05/2014; 567. DOI:10.1051/0004-6361/201220872 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.
    Nature 04/2014; 509(7499). DOI:10.1038/nature13237 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the advent of the Swift satellite it has been possible to obtain precise localisations of GRB positions of sub-arcsec accuracy within seconds, facilitating ground-based robotic telescopes to automatically slew to the target within seconds. This has yielded a plethora of observational data for the afterglow phase of the GRB, but the quantity of data (<2 keV) covering the initial prompt emission still remains small. Only in a handful of cases has it been possible obtain simultaneous coverage of the prompt emission in a multi-wavelength regime (gamma-ray to optical), as a result of: observing the field by chance prior to the GRB (e.g. 080319B/naked-eye burst), long-prompt emission (e.g., 080928, 110205A) or triggered on a pre-cursor (e.g., 041219A, 050820A, 061121). This small selection of bursts have shown both correlated and uncorrelated gamma-ray and optical light curve behaviour, and the multi-wavelength emission mechanism remains far from resolved (i.e. single population synchrotron self-Component, electron distributions, additional neutron components or residual collisions). Such multi-wavelength observations during the GRB prompt phase are pivotal in providing further insight on the poorly understood prompt emission mechanism. We add to this small sample the Swift burst 121217A that had two distinct periods of prompt emission separated by ~700 s, observed by Swift/BAT, Swift/XRT and Fermi/GBM. As a result of the time delay of the second emission, it enabled optical imaging (from 3 to 7 bands) to be taken with the GROND instrument to a resolution as fine as 10s. This multi-wavelength data will hopefully allow us to shed more light on the current picture of prompt emission physics.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, often fit with empirical functions. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray Burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, covering an energy range of 0.001 keV to 100 keV. We determine a photometric redshift of z=3.1+/-0.1 with a line-of-sight extinction of A_V~0 mag, utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma~250 and an emission radius of R<10^18 cm. The prompt-emission broadband spectral energy distribution is well fit with a broken power law with b1=-0.3+/-0.1, b2=0.6+/-0.1 that has a break at E=6.6+/-0.9 keV, which can be interpreted as the maximum injection frequency. Self-absorption by the electron population below energies of E_a<6 keV suggest a magnetic field strength of B~10^5 G. However, all the best fit models underpredict the flux observed in the NIR wavelengths, which also only rebrightens by a factor of ~2 during the second prompt emission episode, in stark contrast to the X-ray emission, which rebrightens by a factor of ~100, suggesting an afterglow component is dominating the emission. We present GRB 121217A one of the few GRBs for which there are multi-wavelength observations of the prompt-emission period and show that it can be understood with a synchrotron radiation model.
    Astronomy and Astrophysics 12/2013; 562. DOI:10.1051/0004-6361/201322600 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past few years the number of well-sampled optical to NIR light curves of long Gamma-Ray Bursts (GRBs) has greatly increased particularly due to simultaneous multi-band imagers such as GROND. Combining these densely sampled ground-based data sets with the Swift UVOT and XRT space observations unveils a much more complex afterglow evolution than what was predicted by the most commonly invoked theoretical models. GRB 100814A represents a remarkable example of these interesting well-sampled events, showing a prominent late-time rebrightening in the optical to NIR bands and a complex spectral evolution. This represents a unique laboratory to test the different afterglow emission models. Here we study the nature of the complex afterglow emission of GRB 100814A in the framework of different theoretical models. Moreover, we compare the late-time chromatic rebrightening with those observed in other well-sampled long GRBs. We analysed the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector at the 2.2 m MPG/ESO telescope together with the X-ray and UV data detected by the instruments onboard the Swift observatory. The broad-band afterglow evolution, achieved by constructing multi-instrument light curves and spectral energy distributions, will be discussed in the framework of different theoretical models. We find that the standard models that describe the broad-band afterglow emission within the external shock scenario fail to describe the complex evolution of GRB 100814A, and therefore more complex scenarios must be invoked. [abridged]
    Astronomy and Astrophysics 12/2013; 562. DOI:10.1051/0004-6361/201321525 · 4.48 Impact Factor
  • J. Elliott · S. Schmidl · J. Greiner
  • J. Elliott · S. Schmidl · J. Greiner
  • J. Elliott · S. Schmidl · J. Greiner · J. F. Graham · M. Tanga
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metallicity is theoretically thought to be a fundamental driver in gamma-ray burst (GRB) explosions and energetics, but is still, even after more than a decade of extensive studies, not fully understood. This is largely related to two phenomena: a dust-extinction bias, that prevented high-mass and thus likely high-metallicity GRB hosts to be detected in the first place, and a lack of efficient instrumentation, that limited spectroscopic studies including metallicity measurements to the low-redshift end of the GRB host population. The subject of this work is the very energetic GRB 110918A, for which we measure a redshift of z=0.984. GRB 110918A gave rise to a luminous afterglow with an intrinsic spectral slope of b=0.70, which probed a sight-line with little extinction (A_V=0.16 mag) typical of the established distributions of afterglow properties. Photometric and spectroscopic follow-up observations of the galaxy hosting GRB 110918A, including optical/NIR photometry with GROND and spectroscopy with VLT/X-shooter, however, reveal an all but average GRB host in comparison to the z~1 galaxies selected through similar afterglows to date. It has a large spatial extent with a half-light radius of ~10 kpc, the highest stellar mass for z<1.9 (log(M_*/M_sol) = 10.68+-0.16), and an Halpha-based star formation rate of 41 M_sol/yr. We measure a gas-phase extinction of ~1.8 mag through the Balmer decrement and one of the largest host-integrated metallicities ever of around solar (12 + log(O/H) = 8.93+/-0.13). This presents one of the very few robust metallicity measurements of GRB hosts at z~1, and establishes that GRB hosts at z~1 can also be very metal rich. It conclusively rules out a metallicity cut-off in GRB host galaxies and argues against an anti-correlation between metallicity and energy release in GRBs.
    Astronomy and Astrophysics 06/2013; 556. DOI:10.1051/0004-6361/201220968 · 4.48 Impact Factor