Hwa-Jung Kim

Yonsei University Hospital, Sŏul, Seoul, South Korea

Are you Hwa-Jung Kim?

Claim your profile

Publications (53)156.85 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium kansasii (Mk) is an emerging pathogen that causes a pulmonary disease similar to tuberculosis. Macrophage apoptosis contributes to innate host defense against mycobacterial infection. Recent studies have suggested that lithium significantly enhances the cytotoxic activity of death stimuli in many cell types. We examined the effect of lithium on the viability of host cells and intracellular Mk in infected macrophages. Lithium treatment resulted in a substantial reduction in the viability of intracellular Mk in macrophages. Macrophage cell death was significantly enhanced after adding lithium to Mk-infected cells but not after adding to uninfected macrophages. Lithium-enhanced cell death was due to an apoptotic response, as evidenced by augmented DNA fragmentation and caspase activation. Reactive oxygen species were essential for lithium-induced apoptosis. Intracellular scavenging by N-acetylcysteine abrogated the lithium-mediated decrease in intracellular Mk growth as well as apoptosis. These data suggest that lithium is associated with control of intracellular Mk growth through modulation of the apoptotic response in infected macrophages.
    The Journal of Microbiology 02/2014; · 1.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The failure of Mycobacterium bovis BCG as a TB vaccine against TB reactivation suggests that latency-associated proteins should be included in alternative TB vaccine development. Further, antigens known to generate protective immunity against the strong Th1 stimulatory response to reactivated TB should be included in novel vaccine design. Recent studies have emphasized the importance of Rpfs from Mycobacterium tuberculosis in the reactivation process and cellular immunity. However, little is known about how RpfB mediates protective immunity against M. tuberculosis. Here, we investigated the functional roles and signaling mechanisms of RpfB in DCs and its implications in the development of T cell immunity. DCs treated with RpfB displayed features of mature and functional status, with elevated expression of cell surface molecules (CD80, CD86, and MHC class I and II) and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IL-12p70). Activation of DCs was mediated by direct binding of RpfB to TLR4, followed by MyD88/TRIF-dependent signaling to MAPKs and NF-κB signaling pathways. Specifically, we found that the RpfB G5 domain is the most important part in RpfB binding to TLR4. RpfB-treated DCs effectively polarized naïve CD4(+) and CD8(+) T cells to secrete IFN-γ and IL-2. Importantly, RpfB induced the expansion of memory CD4(+)/CD8(+)CD44(high)CD62L(low) T cells in the spleen of M. tuberculosis-infected mice. Our data suggest that RpfB regulates innate immunity and activates adaptive immunity through TLR4, a finding that may help in the design of more effective vaccines.
    Journal of leukocyte biology 07/2013; · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Mycobacterium avium-intracellulare complex (MAC) causes a pulmonary disease (PD) similar to tuberculosis (TB). Diagnosis of MAC-PD is complicated and time-consuming. In this study, the serodiagnostic potential of the newly identified MAV2054 and MAV5183 proteins was evaluated in subjects with MAC-PD, pulmonary TB, latent TB, and non-infected healthy controls (HC), together with HspX and the 38-kDa antigen, well-known serodiagnostic M. tuberculosis antigens. All four antigens evoked significantly higher IgG responses in MAC-PD and active TB than in latent TB and HC subjects. Among the antigens, MAV2054 elicited the highest antibody responses in pulmonary TB and MAC-PD patients. IgG titers against MAV2054 and MAV5183 were significantly higher in MAC-PD than in pulmonary TB subjects. In addition, the levels of IgG to all antigens in the M. intracellulare and fibrocavitary forms were higher than those in the M. avium and nodular bronchiectatic forms, respectively. Based on sensitivity and receiver operator characteristic curve analysis, the best candidates for detection of MAC-PD and pulmonary TB were MAV2054 and the 38-kDa antigen, respectively. In total, 76.0% of MAC-PD and 65.0% of active TB patients were reactive to at least more than one antigen. In contrast, only 2.8% of HC subjects were reactive with two or more antigens. Our findings suggest that an ELISA-based assay using the four antigens would be valuable for screening for mycobacterial lung disease including MAC-PD and pulmonary TB, although it does not provide good discrimination of the causing pathogens.
    Clinical and vaccine Immunology: CVI 12/2012; · 2.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although pathogenic mechanisms of tuberculosis have been extensively studied, little is known about the pathogenic mechanisms of Mycobacterium kansasii. In this work the influence of virulence and ER-stress mediated apoptosis of macrophages during two different strains of M. kansasii infection was investigated. We show that M. kansasii infection is associated with ER stress-mediated apoptosis in the murine macrophage cell line RAW 264.7. Infection of RAW 264.7 cells in vitro with apoptosis-inducing a clinical isolate of M. kansasii SM-1 (SM-1) resulted in strong induction of ER stress responses compared with M. kansasii type strain (ATCC 12478)-infected RAW 264.7 cells. Interestingly, inhibition of calpain prevented the induction of CHOP and Bip in ATCC 12478-infected RAW 264.7 cells but not in RAW 264.7 cells infected with SM-1. In contrast, reactive oxygen species (ROS) were significantly increased only in RAW 264.7 cells infected with SM-1. We propose that ROS generation is important for triggering ER stress-mediated apoptosis during SM-1 infection, whereas ATCC 12478-induced, ER stress-mediated apoptosis is associated with calpain activation. Our results demonstrate that the ER stress pathway plays important roles in the pathogenesis of M. kansasii infections, and that different strains of M. kansasii induce different patterns of ER stress-mediated apoptosis.
    Apoptosis 12/2012; · 4.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in animals and MAP involvement in human Crohn's disease has been recently emphasized. Evidence from M. tuberculosis studies suggests mycobacterial proteins activate dendritic cells (DCs) via Toll-like receptor (TLR) 4, eventually determining the fate of immune responses. Here, we investigated whether MAP CobT contributes to the development of T cell immunity through the activation of DCs. MAP CobT recognizes TLR4, induces DC maturation and activation via the MyD88 and TRIF signaling cascades, which are followed by MAP kinases and NF-κB. We further found that MAP CobT-treated DCs activated naive T cells, effectively polarized CD4+ and CD8+ T cells to secrete IFN-γ and IL-2, but not IL-4 and IL-10, and induced T cell proliferation. These data indicate MAP CobT contributes to T helper (Th) 1-polarization of the immune response. MAP CobT-treated DCs specifically induced the expansion of CD4+/CD8+CD44highCD62Llow memory T cells in the mesenteric lymph node (MLN) of MAP-infected mice in a TLR4-dependent manner. Our results indicate that MAP CobT is a novel DC maturation-inducing antigen that drives Th1 polarized-naive/memory T cell expansion in a TLR4-dependent cascade, suggesting that MAP CobT potentially links innate and adaptive immunity against MAP.
    Journal of Biological Chemistry 09/2012; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Live/killed mycobacteria and culture supernatants can suppress asthmatic reactions. This study investigated whether mycobacterial secretory proteins have therapeutic effects on asthma. Mycobacterium bovis bacille Calmette-Guérin (BCG; 2×10(5) CFUs) and mycobacterial secretory proteins (Ag85 complex, 38-kDa protein or MPB70; 4 or 20 µg) were administered intraperitoneally to female BALB/c mice with established airway hyperresponsiveness. One week after treatment, the mice underwent a methacholine challenge test, and then inflammatory cell numbers in bronchoalveolar lavage fluid (BAL) and around bronchi (<500 µm), and cytokine levels in splenocyte supernatants, were assessed. BCG and all of the tested secretory proteins significantly improved airway sensitivity compared to baseline values (P<0.05). The secretory protein Ag85 complex significantly suppressed airway reactivity also (P<0.05), while 38-kDa protein significantly suppressed reactivity and maximal narrowing (P<0.05). The number of eosinophils in BAL and around bronchi, and the goblet cell proportion, were also significantly reduced in mice in both the BCG and secretory protein groups compared to the asthma control group. IFN-γ/IL-5 ratios were significantly higher in mice treated with BCG, 4 µg MPB70 or 4 µg 38-kDa protein than in asthma control mice (P<0.05), and were negatively associated with airway hyperresponsiveness, peribronchial eosinophil numbers and goblet cell proportion (all P<0.05). IL-17A was positively correlated with IL-5 (r=0.379, P<0.001), maximal airway narrowing, peribronchial eosinophil numbers and goblet cell proportion (all P<0.05). Secretory proteins from BCG and M. tuberculosis and live BCG were effective against established asthma, their effects being accompanied by increased IFN-γ/IL-5 ratios. Thus, allergic asthma could be effectively treated with mycobacterial secretory proteins.
    Allergy, asthma & immunology research 07/2012; 4(4):214-21. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) caused by Mycobacterium tuberculosis constitutes an ongoing threat to global health. An antigen that can induce dendritic cell (DC) maturation and lead to enhanced cellular immunity is crucial to the development of an effective TB vaccine. Here, we investigated the functional roles and the related signaling mechanism of the Rv0577 protein, a M. tuberculosis complex-restricted secreted protein involved in the methylglyoxal detoxification pathway. Rv0577 recognizes Toll-like receptor 2 (TLR2) and functionally induces DC maturation by augmenting the expression of cell surface molecules (CD80, CD86, and MHC class I and II) and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IL-12p70) in DCs on MyD88-dependent signaling, mitogen-activated protein kinases, and nuclear factor κB signaling pathways. In addition, Rv0577-treated DCs activated naive T cells, effectively polarized CD4(+) and CD8(+) T cells to secrete IFN-γ and IL-2, and induced T-cell proliferation, indicating that this protein possibly contributes to Th1-polarization of the immune response. More important, unlike LPS, Rv0577-treated DCs specifically induced the proliferation of memory CD4(+)/CD8(+)CD44(high)CD62L(low) T cells in the spleen of M. tuberculosis-infected mice in a TLR2-dependent manner. Taken together, these findings suggest that Rv0577 may regulate innate and adaptive immunity by interacting with TLR2, a finding that could be helpful in the design of new TB vaccines.
    The FASEB Journal 03/2012; 26(6):2695-711. · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is one of the most deadly infectious diseases, with approximately two million people dying of TB annually. An effective therapeutic method for activating dendritic cells (DCs) and driving Th1 immune responses would improve host defenses and further the development of a TB vaccine. Given the importance of DC maturation in eliciting protective immunity against TB, we investigated whether Rv0315, a newly identified Mtb antigen, can prompt DC maturation. We found that Rv0315 functionally activated DCs by augmenting the expression of the co-stimulatory molecules CD80 and CD86 as well as MHC class I/II molecules. Moreover, it increased DC secretion of the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α. Unlike LPS, however, Rv0315 induced the secretion of IL-12p70, but not IL-10. In addition, Rv0315-treated DCs accelerated the proliferation of CD4(+) and CD8(+) splenic T cells from Mtb-infected mice, with increased levels of IFN-γ, in syngeneic and allogeneic mixed lymphocyte reactions, indicating that Rv0315 contributes to Th1 polarization of the immune response. Importantly, both mitogen-activated protein kinases and nuclear factor κB signaling mediated the expression of DC surface markers and cytokines. Taken together, our results indicate that Rv0315 is a novel DC maturation-inducing antigen that drives T cell immune responses toward Th1 polarization, suggesting that Rv0315 plays a key role in determining the nature of the immune response to TB.
    Journal of Molecular Medicine 03/2012; 90(3):285-98. · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterial proteins interact with host macrophages and modulate their functions and cytokine gene expression profile. The protein Rv0652 is abundant in culture filtrates of Mycobacterium tuberculosis K-strain, which belongs to the Beijing family, compared with levels in the H37Rv and CDC1551 strains. Rv0652 induces strong antibody responses in patients with active tuberculosis. We investigated pro-inflammatory cytokine production induced by Rv0652 in murine macrophages and the roles of signalling pathways. In RAW264.7 cells and bone marrow-derived macrophages, recombinant Rv0652 induced predominantly tumour necrosis factor (TNF) and monocyte chemoattractant protein (MCP)-1 production, which was dependent on mitogen-activated protein kinases and nuclear factor-κB. Specific signalling pathway inhibitors revealed that the extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and phosphatidylinositol 3-kinase (PI3K) pathways were essential for Rv0652-induced TNF production, whereas the ERK1/2 and PI3K pathways, but not the p38 pathway, were critical for MCP-1 production in macrophages. Rv0652-stimulated TNF and MCP-1 secretion by macrophages occurred in a Toll-like receptor 4-dependent and MyD88-dependent manner. In addition, Rv0652 significantly up-regulated the expression of the mannose receptor, CD80, CD86 and MHC class II molecules. These results suggest that Rv0652 can induce a protective immunity against M. tuberculosis through the macrophage activation.
    Immunology 02/2012; 136(2):231-40. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a simple electrochemical biosensing strategy for the label-free diagnosis of hepatitis B virus (HBV) on a gold electrode surface. Gold-binding polypeptide (GBP) fused with single-chain antibody (ScFv) against HBV surface antigen (HBsAg), in forms of genetically engineered protein, was utilized. This GBP-ScFv fusion protein can directly bind onto the gold substrate with the strong binding affinity between the GBP and the gold surface, while the recognition site orients toward the sample for target binding at the same time. Furthermore, this one-step immobilization strategy greatly simplifies a fabrication process without any chemical modification as well as maintaining activity of biological recognition elements. This system allows specific immobilization of proteins and sensitive detection of targets, which were verified by surface plasmon resonance analysis and successfully applied to electrochemical cyclic voltammetry and impedance spectroscopy upto 0.14 ng/mL HBsAg.
    Sensors 01/2012; 12(8):10097-108. · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA), a virulence factor involved in extrapulmonary dissemination and a strong diagnostic antigen against tuberculosis, is both surface-associated and secreted. The role of HBHA in macrophages during M. tuberculosis infection, however, is less well known. Here, we show that recombinant HBHA produced by Mycobacterium smegmatis effectively induces apoptosis in murine macrophages. DNA fragmentation, nuclear condensation, caspase activation, and poly (ADP-ribose) polymerase cleavage were observed in apoptotic macrophages treated with HBHA. Enhanced reactive oxygen species (ROS) production and Bax activation were essential for HBHA-induced apoptosis, as evidenced by a restoration of the viability of macrophages pretreated with N-acetylcysteine, a potent ROS scavenger, or transfected with Bax siRNA. HBHA is targeted to the mitochondrial compartment of HBHA-treated and M. tuberculosis-infected macrophages. Dissipation of the mitochondrial transmembrane potential (ΔΨ(m)) and depletion of cytochrome c also occurred in both macrophages and isolated mitochondria treated with HBHA. Disruption of HBHA gene led to the restoration of ΔΨ(m) impairment in infected macrophages, resulting in reduced apoptosis. Taken together, our data suggest that HBHA may act as a strong pathogenic factor to cause apoptosis of professional phagocytes infected with M. tuberculosis.
    PLoS Pathogens 12/2011; 7(12):e1002435. · 8.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial infection can affect hematopoietic precursor cells in bone marrow, because the infected tissues produce various cytokines and chemokines. Little is known about hematopoietic precursor cells, including hematopoietic stem cells and their progenitors, during mycobacterial infection. Here, we showed that mycobacterial infections result in the expansion of not only the lin-c-kit+sca-1+ (LKS+) cell population, but also granulocyte-monocyte progenitor cells in a chronic murine tuberculosis model. Interestingly, stimulation of LKS+ cells with attenuated Mycobacterium tuberculosis H37Ra culture filtrate (RaCF) was significantly stronger than that by virulent H37Rv culture filtrate (RvCF). Lower TNF-α and IL-6 levels were observed in RvCF-stimulated bone marrow cells. Neutralization of TNF-α or IL-6 in RaCF-stimulated bone marrow cells markedly suppressed LKS+ cell clonal expansion. Additionally, numbers of LKS+ cells were lower in TLR2(-/-) and MyD88(-/-) mice after mycobacterial infection. Taken together, LKS+ cell proliferation related to mycobacterial virulence may be related to the secretion of TNF-α and IL-6 associated with TLR signaling. Expansion of hematopoietic progenitor cells may, therefore, play an important role during mycobacterial infection.
    Microbes and Infection 08/2011; 13(14-15):1252-60. · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis (M. tb) takes advantage of various cell types, allowing it to remain in the host for long periods. Because adipocytes have been proposed as niches for dormant M. tb in the latent state, understanding the interaction of virulent M. tb with adipocytes is important. We compared changes in cytokine secretion from 3T3-L1 murine adipocytes infected with virulent M. tb H37Rv (V-M. tb) and attenuated M. tb H37Ra (A-M. tb) strains. Both strains maintained non-replicating states within adipocytes until 10 days post-infection. Adipocytes infected with V-M. tb secreted lower levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-12p40, IL-6, and IL-17, and lower levels of nitric oxide than those infected with A-M. tb. In contrast, the anti-inflammatory cytokines, IL-10 and IL-4, were markedly induced in V-M. tb-infected adipocytes versus those infected with A-M. tb at an early time point. Heat-killed or formalin-fixed bacteria induced lower levels of cytokines and no difference was observed between strains. Moreover, V-M. tb induced a high level of necrosis versus A-M. tb in conjunction with increased levels of LHD. These results suggest that V-M. tb regulates cytokine expression in its favor, increasing cytokines necessary for immune evasion and decreasing those required for protective immunity.
    Microbes and Infection 07/2011; 13(14-15):1242-51. · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis (Mtb) heparin binding hemagglutinin (HBHA) is an Ag known to evoke effective host immune responses during tuberculosis infection. However, the molecular basis of the host immune response to HBHA has not been fully characterized. In this study, we examined the molecular mechanisms by which HBHA can induce the expression of proinflammatory cytokines in macrophages. HBHA-induced mRNA and protein levels of proinflammatory cytokines were determined in bone marrow-derived macrophages (BMDMs) using RT-PCR and ELISA analysis. The roles of intracellular signaling pathways for NF-κB, PI3-K/Akt, and MAPKs were investigated in macrophage proinflammatory responses after stimulation with HBHA. HBHA robustly activated the expression of mRNA and protein of both TNF-α and IL-6, and induced phosphorylation of NF-κB, Akt, and MAPKs in BMDMs. Both TNF-α and IL-6 production by HBHA was regulated by the NF-κB, PI3-K, and MAPK pathways. Furthermore, PI3-K activity was required for the HBHA-induced activation of ERK1/2 and p38 MAPK, but not JNK, pathways. These data suggest that mycobacterial HBHA significantly induces proinflammatory responses through crosstalk between the PI3-K and MAPK pathways in macrophages.
    Immune Network 04/2011; 11(2):123-33.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Effective activation of dendritic cells (DCs) toward T helper (Th)-1 cell polarization would improve DC-based antitumor immunotherapy, helping promote the development of immunotherapeutic vaccines based on T-cell immunity. To achieve this goal, it is essential to develop effective immune adjuvants that can induce powerful Th1 cell immune responses. The pathogenic organism Mycobacterium tuberculosis includes certain constitutes, such as heparin-binding hemagglutinin (HBHA), that possess a strong immunostimulatory potential. In this study, we report the first clarification of the functions and precise mechanism of HBHA in immune stimulation settings relevant to cancer. HBHA induced DC maturation in a TLR4-dependent manner, elevating expression of the surface molecules CD40, CD80, and CD86, MHC classes I and II and the proinflammatory cytokines IL-6, IL-12, IL-1β, TNF-α, and CCR7, as well as stimulating the migratory capacity of DCs in vitro and in vivo. Mechanistic investigations established that MyD88 and TRIF signaling pathways downstream of TLR4 mediated secretion of HBHA-induced proinflammatory cytokines. HBHA-treated DCs activated naïve T cells, polarized CD4(+) and CD8(+) T cells to secrete IFN-γ, and induced T-cell-mediated cytotoxicity. Notably, systemic administration of DCs that were HBHA-treated and OVA(251-264)-pulsed ex vivo greatly strengthened immune priming in vivo, inducing a dramatic regression of tumor growth associated with long-term survival in a murine E.G7 thymoma model. Together, our findings highlight HBHA as an immune adjuvant that favors Th1 polarization and DC function for potential applications in DC-based antitumor immunotherapy.
    Cancer Research 03/2011; 71(8):2858-70. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacteria encounter many different cells during infection within their hosts. Although alveolar epithelial cells play an essential role in host defense as the first cells to be challenged upon contact with mycobacteria, they may contribute to the acquisition of mycobacterial virulence by increasing the expression of virulence or adaptation factors prior to being ingested by macrophages on the side of pathogens. From this aspect, the enhanced virulence of nonpathogenic Mycobacterium smegmatis (MSM) passed through human alveolar A549 epithelial cells (A-MSM) was compared to the direct infection of MSM (D-MSM) in THP-1 macrophages and mouse models. The intracellular growth rate and cytotoxicity of A-MSM were significantly increased in THP-1 macrophages. In addition, compared to D-MSM, A-MSM induced relatively greater interleukin (IL)-1β, IL-6, IL-8, IL-12, TNF-α, MIP-1α, and MCP-1 in THP-1 macrophages. As a next step, a more persistent A-MSM infection was observed in a murine infection model with the development of granulomatous inflammation. Finally, 58 genes induced specifically in A-MSM were partially identified by differential expression using a customized amplification library. These gene expressions were simultaneously maintained in THP-1 infection but no changes were observed in D-MSM. Bioinformatic analysis revealed that these genes are involved mainly in bacterial metabolism including energy production and conversion, carbohydrate, amino acid, and lipid transport, and metabolisms. Conclusively, alveolar epithelial cells promoted the conversion of MSM to the virulent phenotype prior to encountering macrophages by activating the genes required for intracellular survival and presenting its pathogenicity.
    Medical Microbiology and Immunology 02/2011; 200(3):177-91. · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study describes the development of an electrochemical array immunochip for the detection of IgG. Interdigitated immunochip platforms were fabricated by sputtering gold on a glass wafer by using MEMS process and then were coated with Eudragit S100, an enteric polymer, forming an insulating layer over the working area of immunochips. The breakdown of the polymer layer was exemplified by the catalytic action of urease which, in the presence of urea, caused an alkaline pH change. This subsequently caused an increase of the double layer capacitance of the underlying electrode. Used in conjunction with a competitive immunoassay format, this allowed the ratio of initial to final electrode capacitance to be directly linked with the concentration of analyte, i.e. IgG. Responses to IgG could be detected at IgG concentration as low as and showed good linearity up to IgG concentration as high as .
    Bulletin- Korean Chemical Society 01/2011; 32(4). · 0.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An antigen (Ag), CFP-10, found in tissue fluids of tuberculosis (TB) patients may be an ultimate candidate for use as a sensitive TB marker with a sensing method for early simplified diagnosis of TB. In this study, chemical and optical optimizations were carried out using novel immuno-materials for establishment of a self-assembled surface plasmon resonance (SPR) optical immunosensor system for detection of CFP-10, which is valuable for pre-clinical work, prior to conduct of massive clinical observations. For creation of a simple sensing interface, a monoclonal antibody (anti-CFP-10) was immobilized directly on a gold surface, followed by blocking with cystamine. Orientation and accessibility of anti-CFP-10 were assessed by the selective binding of CFP-10. Recent results indicate that the reusability of the sensor chip adopting the cystamine method was found to be preferable to other immobilization methods. A linear relationship was well correlated between SPR angle shift and CFP concentrations in the range from 100ngmL−1 to 1μgmL−1. Modification of the SPR chip with antibody provides a simple experimental platform for investigation of isolated proteins under experimental conditions resembling those of their native environment.
    Sensors and Actuators B Chemical 01/2011; 156(1):271-275. · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis is thought to play a role in host defenses against intracellular pathogens, including Mycobacterium tuberculosis (Mtb), by preventing the release of intracellular components and the spread of mycobacterial infection. This study aims to investigate the role of endoplasmic reticulum (ER) stress mediated apoptosis in mycobacteria infected macrophages. Here, we demonstrate that ER stress-induced apoptosis is associated with Mtb H37Rv-induced cell death of Raw264.7 murine macrophages. We have shown that Mtb H37Rv induced apoptosis are involved in activation of caspase-12, which resides on the cytoplasmic district of the ER. Mtb infection increase levels of other ER stress indicators in a time-dependent manner. Phosphorylation of eIF2α was decreased gradually after Mtb H37Rv infection signifying that Mtb H37Rv infection may affect eIF2α phosphorylation in an attempt to survive within macrophages. Interestingly, the survival of mycobacteria in macrophages was enhanced by silencing CHOP expression. In contrast, survival rate of mycobacteria was reduced by phosphorylation of the eIF2α. Futhermore, the levels of ROS, NO or CHOP expression were significantly increased by live Mtb H37Rv compared to heat-killed Mtb H37Rv indicating that live Mtb H37Rv could induce ER stress response. These findings indicate that eIF2α/CHOP pathway may influence intracellular survival of Mtb H37Rv in macrophages and only live Mtb H37Rv can induce ER stress response. The data support the ER stress pathway plays an important role in the pathogenesis and persistence of mycobacteria.
    PLoS ONE 01/2011; 6(12):e28531. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel duplex PCR method based on variable-number tandem-repeat targets to discriminate among Mycobacterium abscessus complex isolates was developed and evaluated in 85 clinical isolates. The assay accuracy was confirmed by a multiple-target sequence analysis. The duplex PCR assay is a one-step, reliable, and accurate assay for discriminating M. abscessus species.
    Journal of clinical microbiology 12/2010; 49(3):1107-9. · 4.16 Impact Factor

Publication Stats

503 Citations
156.85 Total Impact Points

Institutions

  • 2008–2013
    • Yonsei University Hospital
      • Department of Internal Medicine
      Sŏul, Seoul, South Korea
  • 2010–2012
    • Chonnam National University
      • Department of Allergy
      Gwangju, Gwangju, South Korea
    • Pusan National University
      • School of Medicine
      Pusan, Busan, South Korea
  • 2003–2012
    • Chungnam National University
      • • College of Medicine
      • • Department of Microbiology
      Seongnam, Gyeonggi, South Korea
  • 2010–2011
    • Sungkyunkwan University
      • School of Medicine
      Seoul, Seoul, South Korea
  • 2006
    • Konyang University
      • College of Medicine
      Ronsan, South Chungcheong, South Korea