Iwona Hawrylkiewicz

Brigham and Women's Hospital, Boston, Massachusetts, United States

Are you Iwona Hawrylkiewicz?

Claim your profile

Publications (3)11.84 Total impact

  • American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California; 05/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined the association between single-nucleotide polymorphisms (SNPs) previously associated with chronic obstructive pulmonary disease (COPD) and/or lung function with COPD and COPD-related phenotypes in a novel cohort of patients with severe to very severe COPD. We examined 315 cases of COPD and 330 Caucasian control smokers from Poland. We included three SNPs previously associated with COPD: rs7671167 (FAM13A), rs13180 (IREB2), and rs8034191 (CHRNA 3/5), and four SNPs associated with lung function in a genome-wide association study of general population samples: rs2070600 (AGER), rs11134242 (ADCY2), rs4316710 (THSD4), and rs17096090 (INTS12). We tested for associations with severe COPD and COPD-related phenotypes, including lung function, smoking behavior, and body mass index. Subjects with COPD were older (average age 62 versus 58 years, P < 0.01), with more pack-years of smoking (45 versus 33 pack-years, P < 0.01). CHRNA3/5 (odds ratio [OR], 1.89; 95% confidence interval [CI], 1.5-2.4; P = 7.4 × 10(-7)), IREB2 (OR, 0.69; 95% CI, 0.5-0.9; P = 3.4 × 10(-3)), and ADCY2 (OR, 1.35; 95% CI, 1.1-1.7; P = 0.01) demonstrated significant associations with COPD. FAM13A (OR, 0.8; 95% CI, 0.7-1.0; P = 0.11) approached statistical significance. FAM13A and ADCY2 also demonstrated a significant association with lung function. Thus, in severe to very severe COPD, we demonstrate a replication of association between two SNPs previously associated with COPD (CHRNA3/5 and IREB2), as well as an association with COPD of one locus initially associated with lung function (ADCY2).
    American Journal of Respiratory Cell and Molecular Biology 03/2012; 47(2):203-8. · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple intergenic single-nucleotide polymorphisms (SNPs) near hedgehog interacting protein (HHIP) on chromosome 4q31 have been strongly associated with pulmonary function levels and moderate-to-severe chronic obstructive pulmonary disease (COPD). However, whether the effects of variants in this region are related to HHIP or another gene has not been proven. We confirmed genetic association of SNPs in the 4q31 COPD genome-wide association study (GWAS) region in a Polish cohort containing severe COPD cases and healthy smoking controls (P = 0.001 to 0.002). We found that HHIP expression at both mRNA and protein levels is reduced in COPD lung tissues. We identified a genomic region located ∼85 kb upstream of HHIP which contains a subset of associated SNPs, interacts with the HHIP promoter through a chromatin loop and functions as an HHIP enhancer. The COPD risk haplotype of two SNPs within this enhancer region (rs6537296A and rs1542725C) was associated with statistically significant reductions in HHIP promoter activity. Moreover, rs1542725 demonstrates differential binding to the transcription factor Sp3; the COPD-associated allele exhibits increased Sp3 binding, which is consistent with Sp3's usual function as a transcriptional repressor. Thus, increased Sp3 binding at a functional SNP within the chromosome 4q31 COPD GWAS locus leads to reduced HHIP expression and increased susceptibility to COPD through distal transcriptional regulation. Together, our findings reveal one mechanism through which SNPs upstream of the HHIP gene modulate the expression of HHIP and functionally implicate reduced HHIP gene expression in the pathogenesis of COPD.
    Human Molecular Genetics 12/2011; 21(6):1325-35. · 7.69 Impact Factor

Publication Stats

29 Citations
11.84 Total Impact Points

Top co-authors View all

Institutions

  • 2012
    • Brigham and Women's Hospital
      Boston, Massachusetts, United States
  • 2011
    • Harvard Medical School
      • Department of Medicine
      Boston, MA, United States