Anna A Kuang

Stanford University, Palo Alto, CA, United States

Are you Anna A Kuang?

Claim your profile

Publications (3)29.15 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Excess scar formation after cutaneous injury can result in hypertrophic scar (HTS) or keloid formation. Modern strategies to treat pathologic scarring represent nontargeted approaches that produce suboptimal results. Mammalian target of rapamycin (mTOR), a central mediator of inflammation, has been proposed as a novel target to block fibroproliferation. To examine its mechanism of action, we performed genomewide microarray on human fibroblasts (from normal skin, HTS, and keloid scars) treated with the mTOR inhibitor, rapamycin. Hypertrophic scar and keloid fibroblasts demonstrated overexpression of collagen I and III that was effectively abrogated with rapamycin. Blockade of mTOR specifically impaired fibroblast expression of the collagen biosynthesis genes PLOD, PCOLCE, and P4HA, targets significantly overexpressed in HTS and keloid scars. These data suggest that pathologic scarring can be abrogated via modulation of mTOR pathways in procollagen and collagen processing.
    Annals of plastic surgery. 06/2014; 72(6):711-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The purpose of this study was to investigate the effects of tacrolimus on human fibroblasts derived from unwounded skin, hypertrophic scars (HTS), and keloids. We hypothesized that tacrolimus, a potent anti-inflammatory and immunosuppressant drug known to attenuate solid organ transplant fibrosis, would block collagen expression in human dermal fibroblasts. METHODS: We performed genomewide microarray analysis on human dermal fibroblasts treated with tacrolimus in vitro. We used principal component analysis and hierarchical clustering to identify targets regulated by tacrolimus. We performed quantitative polymerase chain reaction to validate the effect of tacrolimus on collagen 1 and 3 expression. RESULTS: We identified 62, 136, and 185 gene probes on microarray analysis that were significantly regulated (P < 0.05) by tacrolimus in normal, HTS, and keloid fibroblasts, respectively. Collagen pathways were not blocked after tacrolimus exposure in any of the fibroblast groups; we validated these findings using quantitative polymerase chain reaction for collagen 1 and 3. Microarray gene expression of NME/NM23 nucleoside diphosphate kinase 1 and heterogeneous nuclear ribonucleoprotein H3-2H9 were significantly downregulated (P < 0.05) by tacrolimus in both HTS and keloid fibroblast populations but not normal fibroblasts. CONCLUSIONS: Tacrolimus does not modulate the expression of collagen 1 or 3 in human dermal fibroblasts in vitro. Microarray gene expression of NME/NM23 nucleoside diphosphate kinase 1 and heterogeneous nuclear ribonucleoprotein H3-2H9 are blocked by tacrolimus in pathologic fibroblasts but not normal fibroblasts, and may represent novel genes underlying HTS and keloid pathogenesis. Tacrolimus-based anti-fibrotics might prove more effective if non-fibroblast populations such as inflammatory cells and keratinocytes are targeted.
    Journal of Surgical Research 04/2013; · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exuberant fibroproliferation is a common complication after injury for reasons that are not well understood. One key component of wound repair that is often overlooked is mechanical force, which regulates cell-matrix interactions through intracellular focal adhesion components, including focal adhesion kinase (FAK). Here we report that FAK is activated after cutaneous injury and that this process is potentiated by mechanical loading. Fibroblast-specific FAK knockout mice have substantially less inflammation and fibrosis than control mice in a model of hypertrophic scar formation. We show that FAK acts through extracellular-related kinase (ERK) to mechanically trigger the secretion of monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), a potent chemokine that is linked to human fibrotic disorders. Similarly, MCP-1 knockout mice form minimal scars, indicating that inflammatory chemokine pathways are a major mechanism by which FAK mechanotransduction induces fibrosis. Small-molecule inhibition of FAK blocks these effects in human cells and reduces scar formation in vivo through attenuated MCP-1 signaling and inflammatory cell recruitment. These findings collectively indicate that physical force regulates fibrosis through inflammatory FAK-ERK-MCP-1 pathways and that molecular strategies targeting FAK can effectively uncouple mechanical force from pathologic scar formation.
    Nature medicine 12/2011; 18(1):148-52. · 27.14 Impact Factor