Are you Yan Fan?

Claim your profile

Publications (2)9.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Direct chlorination of toxic cyanobacteria cells can occur at various stages of treatment. The objectives of this work are to determine and model the extent of Microcystis aeruginosa cells lysis, toxins and organic compounds release and oxidation, and quantify the subsequent disinfection by-products formation. Chlorine exposure (CT) values of 296 and 100 mg min/L were required to obtain 76% cell lysis and oxidation of released cell-bound toxins at levels below the provisional World Health Organisation guideline value (1 μg/L MC-LR). Toxin oxidation rates were similar or faster than cell lysis rates in ultrapure water. This work presents much needed unit M. aeruginosa cellular chlorine demand (5.6 ± 0.2 pgCl(2)/cell) which could be used to adjust the chlorination capacity to satisfy the total chlorine demand associated with the presence of cells. Furthermore, a novel successive reaction kinetics model is developed using the kinetics of the chlorine reaction with cyanobacterial cells and cell-bound toxins. Chlorination of dense cell suspensions (500,000 cells/mL) in ultrapure water at CT up to 3051 mg min/L resulted in modest concentrations of trihalomethanes (13 μg/L) and haloacetic acids (below detection limit).
    Water Research 11/2012; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The detection of cyanobacteria and their associated toxins has intensified in recent years in both drinking water sources and the raw water of drinking water treatment plants (DWTPs). The objectives of this study were to: 1) estimate the breakthrough and accumulation of toxic cyanobacteria in water, scums and sludge inside a DWTP, and 2) to determine whether chlorination can be an efficient barrier to the prevention of cyanotoxin breakthrough in drinking water. In a full scale DWTP, the fate of cyanobacteria and their associated toxins was studied after the addition of coagulant and powdered activated carbon, post clarification, within the clarifier sludge bed, after filtration and final chlorination. Elevated cyanobacterial cell numbers (4.7 × 10(6)cells/mL) and total microcystins concentrations (up to 10 mg/L) accumulated in the clarifiers of the treatment plant. Breakthrough of cells and toxins in filtered water was observed. Also, a total microcystins concentration of 2.47 μg/L was measured in chlorinated drinking water. Cyanobacterial cells and toxins from environmental bloom samples were more resistant to chlorination than results obtained using laboratory cultured cells and dissolved standard toxins.
    Water Research 11/2011; 46(5):1511-23. · 4.66 Impact Factor