Kathryn Packman

Roche, Bâle, Basel-City, Switzerland

Are you Kathryn Packman?

Claim your profile

Publications (36)208.04 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The field of small-molecule inhibitors of protein-protein interactions is rapidly advancing and the specific area of inhibitors of the p53/MDM2 interaction is a prime example. Several groups have published on this topic and multiple compounds are in various stages of clinical development. Building on the strength of the discovery of RG7112, a Nutlin imidazoline-based compound, and RG7388, a pyrrolidine-based compound, we have developed additional scaffolds that provide opportunities for future development. Here, we report the discovery and optimization of a highly potent and selective series of spiroindolinone small-molecule MDM2 inhibitors, culminating in RO8994.
    Bioorganic & medicinal chemistry. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antitumor clinical activity has been demonstrated for the MDM2 antagonist RG7112, but patient tolerability for the necessary daily dosing was poor. Here, utilizing RG7388, a second-generation nutlin with superior selectivity and potency, we determine the feasibility of intermittent dosing to guide the selection of initial phase I scheduling regimens. A pharmacokinetic-pharmacodynamic (PKPD) model was developed based on preclinical data to determine alternative dosing schedule requirements for optimal RG7388-induced antitumor activity. This PKPD model was used to investigate the pharmacokinetics of RG7388 linked to the time-course of the antitumor effect in an osteosarcoma xenograft model in mice. These data were used to prospectively predict intermittent and continuous dosing regimens, resulting in tumor stasis in the same model system. RG7388-induced apoptosis was delayed relative to drug exposure with continuous treatment not required. In initial efficacy testing, daily dosing at 30 mg/kg and twice a week dosing at 50 mg/kg of RG7388 were statistically equivalent in our tumor model. Additionally, weekly dosing of 50 mg/kg was equivalent to 10 mg/kg given daily. The implementation of modeling and simulation on these data suggested several possible intermittent clinical dosing schedules. Further preclinical analyses confirmed these schedules as viable options. Besides chronic administration, antitumor activity can be achieved with intermittent schedules of RG7388, as predicted through modeling and simulation. These alternative regimens may potentially ameliorate tolerability issues seen with chronic administration of RG7112, while providing clinical benefit. Thus, qweekly and daily times five schedules were selected for RG7388 clinical testing.
    Clinical Cancer Research 05/2014; · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of small-molecule MDM2 inhibitors to restore dysfunctional p53 activities represents a novel approach for cancer treatment. In a previous communication, the efforts leading to the identification of a non-imidazoline MDM2 inhibitor, RG7388, was disclosed and revealed the desirable in vitro and in vivo pharmacological properties that this class of pyrrolidine-based inhibitors possesses. Given this richness and the critical need for a wide variety of chemical structures to ensure success in the clinic, research was expanded to evaluate additional derivatives. Here we report two new potent, selective, and orally active p53-MDM2 antagonists, RO5353 and RO2468, as follow-ups with promising potential for clinical development.
    ACS Medicinal Chemistry Letters 02/2014; 5(2):124-127. · 3.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a powerful research tool, siRNA's therapeutic and target validation utility with leukemia cells and long-term gene knockdown is severely restricted by the lack of omnipotent, safe, stable and convenient delivery. Here, we detail our discovery of siRNA-containing lipid nanoparticles able to effectively transfect several leukemia and difficult-to-transfect adherent cell lines also providing in vivo delivery to mouse spleen and bone marrow tissues through tail-vein administration. We disclose a series of novel structurally-related lipids accounting for the superior transfection ability, and reveal a correlation between expression of Caveolins and successful transfection. These lipid nanoparticles, bearing low toxicity and long stability of more than six months, are ideal for continuous long-term dosing. Our discovery represents the first effective siRNA-containing lipid nanoparticles for leukemia cells, which not only enables high-throughput siRNA screening with leukemia cells and difficult-to-transfect adherent cells, but also paves the way for the development of therapeutic siRNA for leukemia treatment.Molecular Therapy (2013); doi:10.1038/mt.2013.210.
    Molecular Therapy 09/2013; · 7.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To explore the role of TWEAK in tumor growth and antitumor immune response and the activity and mechanism of RG7212, an antagonistic anti-TWEAK antibody, in tumor models. TWEAK induced signaling and gene expression were explored in tumor cell lines and inhibition of these effects and antitumor efficacy with RG7212 treatment was assessed in human tumor xenograft-, patient-derived xenograft- and syngeneic- tumor models and Phase I patients. Genetic features correlated with anti-tumor activity were characterized. In tumor cell lines, TWEAK induces proliferation, survival and NF-kB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. TWEAK inducible CD274, CCL2, CXCL-10 and -11 modulate T cell and monocyte recruitment, T cell activation and macrophage differentiation. These factors and TWEAK-induced signaling were decreased, and tumor, blood and spleen immune cell composition was altered with RG7212 treatment in mice. RG7212 inhibits tumor growth in vivo in models with TWEAK receptor, Fn14, expression and markers of pathway activation. In Phase I testing, signs of tumor shrinkage and stable disease were observed without dose limiting toxicity. In a patient with advanced, Fn14-positive, malignant melanoma with evidence of tumor regression, proliferation markers were dramatically reduced, tumor T cell infiltration increased and tumor macrophage content decreased. Antitumor activity, a lack of toxicity in humans and animals and no evidence of antagonism with standard of care or targeted agents in mice, suggest RG7212 is a promising agent for use in combination therapies in patients with Fn14 positive tumors.
    Clinical Cancer Research 08/2013; · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stapled α-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein-protein interaction and may offer a viable modality for cancer therapy.
    Proceedings of the National Academy of Sciences 08/2013; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Restoration of p53 activity by inhibition of the p53-MDM2 interaction has been considered an attractive approach for cancer treatment. However, the hydrophobic protein-protein interaction surface represents a significant challenge for the development of small-molecule inhibitors with desirable pharmacological profiles. RG7112 was the first small-molecule p53-MDM2 inhibitor in clinical development. Here, we report the discovery and characterization of a second generation clinical MDM2 inhibitor, RG7388, with superior potency and selectivity.
    Journal of Medicinal Chemistry 06/2013; · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The p53 tumor suppressor is a potent transcription factor that plays a key role in the regulation of cellular responses to stress. It is controlled by its negative regulator MDM2, which binds directly to p53 and inhibits its transcriptional activity. MDM2 also targets p53 for degradation by the proteasome. Many tumors produce high levels of MDM2, thereby impairing p53 function. Restoration of p53 activity by inhibiting the p53-MDM2 interaction may represent a novel approach to cancer treatment. RG7112 (2g) is the first clinical small-molecule MDM2 inhibitor designed to occupy the p53-binding pocket of MDM2. In cancer cells expressing wild-type p53, RG7112 stabilizes p53 and activates the p53 pathway, leading to cell cycle arrest, apoptosis, and inhibition or regression of human tumor xenografts.
    ACS Medicinal Chemistry Letters 05/2013; 4(5):466-9. · 3.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new series of 7,8-disubstituted pyrazolobenzodiazepines based on the lead compound 1 have been synthesized and evaluated for their effects on mitosis and angiogenesis. Described herein is the design, synthesis, SAR, and antitumor activity of these compounds leading to the identification of R1530, which was selected for clinical evaluation.
    ACS Medicinal Chemistry Letters 02/2013; 4(2):259-63. · 3.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MDM2 negatively regulates p53 stability and many human tumors overproduce MDM2 as a mechanism to restrict p53 function. Thus, inhibitors of p53-MDM2 binding that can reactivate p53 in cancer cells may offer an effective approach for cancer therapy. RG7112 is a potent and selective member of the Nutlin family of MDM2 antagonists currently in Phase I clinical studies. RG7112 binds MDM2 with high affinity (KD ~11 nM), blocking its interactions with p53 in vitro. A crystal structure of the RG7112-MDM2 complex revealed that the small molecule binds in the p53 pocket of MDM2 mimicking the interactions of critical p53 amino acid residues. Treatment of cancer cells expressing wild-type p53 with RG7112 activated the p53 pathway, leading to cell cycle arrest and apoptosis. RG7112 showed potent antitumor activity against a panel of solid tumor cell lines. However, its apoptotic activity varied widely with the best response observed in osteosarcoma cells with MDM2 gene amplification. Interestingly, inhibition of caspase activity did not change the kinetics of p53-induced cell death. Oral administration of RG7112 to human xenograft-bearing mice at non-toxic concentrations caused dosedependent changes in proliferation/apoptosis biomarkers as well as tumor inhibition and regression. Notably, RG7112 was highly synergistic with androgen deprivation in LNCaP xenograft tumors. Our findings offer a preclinical proof-of-concept that RG7112 is effective in treatment of solid tumors expressing wild-type p53.
    Cancer Research 02/2013; · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.
    PLoS ONE 01/2012; 7(8):e42598. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A high percentage of patients with BRAF(V600E) mutant melanomas respond to the selective RAF inhibitor vemurafenib (RG7204, PLX4032) but resistance eventually emerges. To better understand the mechanisms of resistance, we used chronic selection to establish BRAF(V600E) melanoma clones with acquired resistance to vemurafenib. These clones retained the V600E mutation and no second-site mutations were identified in the BRAF coding sequence. Further characterization showed that vemurafenib was not able to inhibit extracellular signal-regulated kinase phosphorylation, suggesting pathway reactivation. Importantly, resistance also correlated with increased levels of RAS-GTP, and sequencing of RAS genes revealed a rare activating mutation in KRAS, resulting in a K117N change in the KRAS protein. Elevated levels of CRAF and phosphorylated AKT were also observed. In addition, combination treatment with vemurafenib and either a MAP/ERK kinase (MEK) inhibitor or an AKT inhibitor synergistically inhibited proliferation of resistant cells. These findings suggest that resistance to BRAF(V600E) inhibition could occur through several mechanisms, including elevated RAS-GTP levels and increased levels of AKT phosphorylation. Together, our data implicate reactivation of the RAS/RAF pathway by upstream signaling activation as a key mechanism of acquired resistance to vemurafenib, in support of clinical studies in which combination therapy with other targeted agents are being strategized to combat resistance.
    Cancer Research 12/2011; 72(4):969-78. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protein kinase BRAF is a key component of the RAS-RAF signaling pathway which plays an important role in regulating cell proliferation, differentiation, and survival. Mutations in BRAF at codon 600 promote catalytic activity and are associated with 8% of all human (solid) tumors, including 8% to 10% of colorectal cancers (CRC). Here, we report the preclinical characterization of vemurafenib (RG7204; PLX4032; RO5185426), a first-in-class, specific small molecule inhibitor of BRAF(V600E) in BRAF-mutated CRC cell lines and tumor xenograft models. As a single agent, vemurafenib shows dose-dependent inhibition of ERK and MEK phosphorylation, thereby arresting cell proliferation in BRAF(V600)-expressing cell lines and inhibiting tumor growth in BRAF(V600E) bearing xenograft models. Because vemurafenib has shown limited single-agent clinical activity in BRAF(V600E)-mutant metastatic CRC, we therefore explored a range of combination therapies, with both standard agents and targeted inhibitors in preclinical xenograft models. In a BRAF-mutant CRC xenograft model with de novo resistance to vemurafenib (RKO), tumor growth inhibition by vemurafenib was enhanced by combining with an AKT inhibitor (MK-2206). The addition of vemurafenib to capecitabine and/or bevacizumab, cetuximab and/or irinotecan, or erlotinib resulted in increased antitumor activity and improved survival in xenograft models. Together, our findings suggest that the administration of vemurafenib in combination with standard-of-care or novel targeted therapies may lead to enhanced and sustained clinical antitumor efficacy in CRCs harboring the BRAF(V600E) mutation.
    Cancer Research 12/2011; 72(3):779-89. · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepsin is a type II transmembrane serine protease that is expressed in several human tissues. Overexpression of hepsin has been found to correlate with tumour progression and metastasis, which is so far best studied for prostate cancer, where more than 90% of such tumours show this characteristic. To enable improved future patient treatment, we have developed a monoclonal humanized antibody that selectively inhibits human hepsin and does not inhibit other related proteases. We found that our antibody, hH35, potently inhibits hepsin enzymatic activity at nanomolar concentrations. Kinetic characterization revealed non-linear, slow, tight-binding inhibition. This correlates with the crystal structure we obtained for the human hepsin-hH35 antibody Fab fragment complex, which showed that the antibody binds hepsin around α3-helix, located far from the active centre. The unique allosteric mode of inhibition of hH35 is distinct from the recently described HGFA (hepatocyte growth factor activator) allosteric antibody inhibition. We further explain how a small change in the antibody design induces dramatic structural rearrangements in the hepsin antigen upon binding, leading to complete enzyme inactivation.
    Biochemical Journal 12/2011; 442(3):483-94. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although targeting the Ras/Raf/MEK pathway remains a promising anticancer strategy, mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitors in clinical development are likely to be limited in their ability to produce durable clinical responses due to the emergence of acquired drug resistance. To identify potential mechanisms of such resistance, we established MEK inhibitor-resistant clones of human HT-29 colon cancer cells (HT-29R cells) that harbor the B-RafV600E mutation. HT-29R cells were specifically resistant to MEK inhibition in vitro and in vivo, with drug-induced elevation of MEK/ERK and their downstream targets primarily accountable for drug resistance. We identified MEK1(F129L) mutation as a molecular mechanism responsible for MEK/ERK pathway activation. In an isogenic cell system that extended these findings into other cancer cell lines, the MEK1(F129L) mutant exhibited higher intrinsic kinase activity than wild-type MEK1 [MEK1(WT)], leading to potent activation of ERK and downstream targets. The MEK1(F129L) mutation also strengthened binding to c-Raf, suggesting an underlying mechanism of higher intrinsic kinase activity. Notably, the combined use of Raf and MEK inhibitors overcame the observed drug resistance and exhibited greater synergy in HT-29R cells than the drug-sensitive HT-29 parental cells. Overall, our findings suggested that mutations in MEK1 can lead to acquired resistance in patients treated with MEK inhibitors and that a combined inhibition of Raf and MEK may be potentially useful as a strategy to bypass or prevent drug resistance in the clinic.
    Cancer Research 06/2011; 71(16):5535-45. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study describes the antiproliferative activity of the multikinase inhibitor R1530 in vitro and its antitumor and anti-angiogenic activity, pharmacokinetics, and tolerability in vivo. The antiproliferative activity of R1530 was investigated in a range of human tumor, endothelial and fibroblast cell lines. Tolerability and antitumor activity were assessed in mice bearing a range of human tumor xenografts, and anti-angiogenic properties were established in the murine corneal pocket assay. R1530 pharmacokinetics in mice were established. R1530 strongly inhibited human tumor cell proliferation. Growth factor-driven proliferation of endothelial and fibroblast cells was also inhibited. Significant tumor growth inhibition was demonstrated in a lung cancer xenograft model with a range of once daily, weekly and twice-weekly doses of R1530 (3.125-50 mg/kg qd, 100 mg/kg qw, 100 mg/kg biw). Daily doses were most effective in the lung cancer model and also had significant growth inhibitory effects in models of colorectal, prostate, and breast tumors. Tumor regression occurred in all models treated with the maximum tolerated daily dose (50 mg/kg). The doses of 25 and 50 mg/kg qd resulted in biologically significant increased survival in all tested models. After oral administration in nude mice, R1530 showed good tissue penetration. Exposure was dose dependent up to 100 mg/kg with oral administration. R1530 has demonstrated activity against a range of tumor models in vitro and in vivo and is an effective inhibitor of angiogenesis. These findings support the approach of targeting multiple pathways in the search for potential agents with improved anticancer properties.
    Cancer Chemotherapy and Pharmacology 05/2011; 68(6):1585-94. · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interest continues to build around the early application of patient selection markers to prospectively identify patients likely to show clinical benefit from cancer therapies. Hypothesis generation and clinical strategies often begin at the preclinical stage where responder and nonresponder tumor cell lines are first identified and characterized. In the present study, we investigate the drivers of in vivo resistance to the γ-secretase inhibitor RO4929097. Beginning at the tissue culture level, we identified apparent IL6 and IL8 expression differences that characterized tumor cell line response to RO4929097. We validated this molecular signature at the preclinical efficacy level identifying additional xenograft models resistant to the in vivo effects of RO4929097. Our data suggest that for IL6 and IL8 overexpressing tumors, RO4929097 no longer impacts angiogenesis or the infiltration of tumor associated fibroblasts. These preclinical data provide a rationale for preselecting patients possessing low levels of IL6 and IL8 prior to RO4929097 dosing. Extending this hypothesis into the clinic, we monitored patient IL6 and IL8 serum levels prior to dosing with RO4929097 during Phase I. Interestingly, the small group of patients deriving some type of clinical benefit from RO4929097 presented with low baseline levels of IL6 and IL8. Our data support the continued investigation of this patient selection marker for RO4929097 and other types of Notch inhibitors undergoing early clinical evaluation.
    Molecular oncology 01/2011; 5(3):292-301. · 6.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hormone therapy is the standard of care for newly diagnosed or recurrent prostate cancers. It uses anti-androgen agents, castration, or both to eliminate cancer promoting effect of testicular androgen. The p53 tumor suppressor controls a major pathway that can block cell proliferation or induce apoptosis in response to diverse forms of oncogenic stress. Activation of the p53 pathway in cancer cells expressing wild-type p53 has been proposed as a novel therapeutic strategy and recently developed MDM2 antagonists, the nutlins, have validated this in preclinical models of cancer. The crosstalk between p53 and androgen receptor (AR) signaling suggest that p53 activation could augment antitumor outcome of androgen ablation in prostate cancer. Here, we test this hypothesis in vitro and in vivo using the MDM2 antagonist, nutlin-3 and the p53 wild-type prostate cancer cell line, LNCaP. Using charcoal-stripped serum as a cellular model of androgen deprivation, we show an increased apoptotic effect of p53 activation by nutlin-3a in the androgen-dependent LNCaP cells and to a lesser extent in androgen-independent but responsive 22Rv1 cell line. This effect is due, at least in part, to an enhanced downregulation of AR expression by activated p53. In vivo, androgen deprivation followed by two weeks of nutlin administration in LNCaP-bearing nude mice led to a greater tumor regression and dramatically increased survival. Since majority of prostate tumors express wild-type p53, its activation by MDM2 antagonists in combination with androgen depletion may offer an efficacious new approach to prostate cancer therapy.
    Molecular Cancer 01/2011; 10:49. · 5.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The BRAF(V600E) mutation is common in several human cancers, especially melanoma. RG7204 (PLX4032) is a small-molecule inhibitor of BRAF(V600E) kinase activity that is in phase II and phase III clinical testing. Here, we report a preclinical characterization of the antitumor activity of RG7204 using established in vitro and in vivo models of malignant melanoma. RG7204 potently inhibited proliferation and mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase and ERK phosphorylation in a panel of tumor cell lines, including melanoma cell lines expressing BRAF(V600E) or other mutant BRAF proteins altered at codon 600. In contrast, RG7204 lacked activity in cell lines that express wild-type BRAF or non-V600 mutations. In several tumor xenograft models of BRAF(V600E)-expressing melanoma, we found that RG7204 treatment caused partial or complete tumor regressions and improved animal survival, in a dose-dependent manner. There was no toxicity observed in any dose group in any of the in vivo models tested. Our findings offer evidence of the potent antitumor activity of RG7204 against melanomas harboring the mutant BRAF(V600E) gene.
    Cancer Research 07/2010; 70(13):5518-27. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Targeting the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway represents a promising anticancer strategy. Recently, we have reported a novel class of potent and selective non-ATP-competitive MEK1/2 inhibitors with a unique structure and mechanism of action. RO5068760 is a representative of this class showing significant efficacy in a broad spectrum of tumors with aberrant mitogen-activated protein kinase pathway activation. To understand the relationship between systemic exposures and target (MEK1/2) inhibition as well as tumor growth inhibition, the current study presents a detailed in vivo characterization of efficacy, pharmacokinetics, and pharmacodynamics of RO5068760 in multiple xenograft tumor models. For inhibition of MEK1/2 as measured by the phosphorylated ERK levels, the estimated EC(50)s in plasma were 1.36 micromol/L (880 ng/mL) and 3.35 micromol/L (2168 ng/mL) in LOX melanoma and HT-29 colorectal cancer models, respectively. A similar EC(50) (1.41 micromol/L or 915 ng/mL) was observed in monkey peripheral blood lymphocytes. To achieve tumor growth inhibition (>or=90%), an average plasma drug concentration of 0.65 or 5.23 micromol/L was required in B-RafV600E or K-Ras mutant tumor models, respectively, which were remarkably similar to the IC(90) values (0.64 or 4.1 micromol/L) determined in vitro for cellular growth inhibition. With equivalent in vivo systemic exposures, RO5068760 showed superior efficacy in tumors harboring B-RafV600E mutation. The plasma concentration time profiles indicate that constant p-ERK suppression (>50%) may not be required for optimal efficacy, especially in highly responsive tumors. This study may facilitate future clinical trial design in using biochemical markers for early proof of mechanism and in selecting the right patients and optimal dose regimen.
    Molecular Cancer Therapeutics 01/2010; 9(1):134-44. · 5.60 Impact Factor