Miquell O Miller

Stanford University, Palo Alto, California, United States

Are you Miquell O Miller?

Claim your profile

Publications (2)17.02 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Rupture and dissection of aortic root aneurysms remain the leading causes of death in patients with the Marfan syndrome, a hereditary connective tissue disorder that affects 1 in 5000 individuals worldwide. In the present study, we use a Marfan mouse model (Fbn1(C1039G/+)) to investigate the biological importance of apoptosis during aneurysm development in Marfan syndrome. Approach and results: Using in vivo single-photon emission computed tomographic-imaging and ex vivo autoradiography for Tc99m-annexin, we discovered increased apoptosis in the Fbn1(C1039G/+) ascending aorta during early aneurysm development peaking at 4 weeks. Immunofluorescence colocalization studies identified smooth muscle cells (SMCs) as the apoptotic cell population. As biological proof of concept that early aortic wall apoptosis plays a role in aneurysm development in Marfan syndrome, Fbn1(C1039G/+) mice were treated daily from 2 to 6 weeks with either (1) a pan-caspase inhibitor, Q-VD-OPh (20 mg/kg), or (2) vehicle control intraperitoneally. Q-VD-OPh treatment led to a significant reduction in aneurysm size and decreased extracellular matrix degradation in the aortic wall compared with control mice. In vitro studies using Fbn1(C1039G/+) ascending SMCs showed that apoptotic SMCs have increased elastolytic potential compared with viable cells, mostly because of caspase activity. Moreover, in vitro (1) cell membrane isolation, (2) immunofluorescence staining, and (3) scanning electron microscopy studies illustrate that caspases are expressed on the exterior cell surface of apoptotic SMCs. Conclusions: Caspase inhibition attenuates aneurysm development in an Fbn1(C1039G/+) Marfan mouse model. Mechanistically, during apoptosis, caspases are expressed on the cell surface of SMCs and likely contribute to elastin degradation and aneurysm development in Marfan syndrome.
    Arteriosclerosis Thrombosis and Vascular Biology 10/2014; 35(1). DOI:10.1161/ATVBAHA.114.304364 · 6.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marfan syndrome (MFS) is a systemic connective tissue disorder notable for the development of aortic root aneurysms and the subsequent life-threatening complications of aortic dissection and rupture. Underlying fibrillin-1 gene mutations cause increased transforming growth factor-β (TGF-β) signaling. Although TGF-β blockade prevents aneurysms in MFS mouse models, the mechanisms through which excessive TGF-β causes aneurysms remain ill-defined. We investigated the role of microRNA-29b (miR-29b) in aneurysm formation in MFS. Using quantitative polymerase chain reaction, we discovered that miR-29b, a microRNA regulating apoptosis and extracellular matrix synthesis/deposition genes, is increased in the ascending aorta of Marfan (Fbn1(C1039G/+)) mice. Increased apoptosis, assessed by increased cleaved caspase-3 and caspase-9, enhanced caspase-3 activity, and decreased levels of the antiapoptotic proteins, Mcl-1 and Bcl-2, were found in the Fbn1(C1039G/+) aorta. Histological evidence of decreased and fragmented elastin was observed exclusively in the Fbn1(C1039G/+) ascending aorta in association with repressed elastin mRNA and increased matrix metalloproteinase-2 expression and activity, both targets of miR-29b. Evidence of decreased activation of nuclear factor κB, a repressor of miR-29b, and a factor suppressed by TGF-β, was also observed in Fbn1(C1039G/+) aorta. Furthermore, administration of a nuclear factor κB inhibitor increased miR-29b levels, whereas TGF-β blockade or losartan effectively decreased miR-29b levels in Fbn1(C1039G/+) mice. Finally, miR-29b blockade by locked nucleic acid antisense oligonucleotides prevented early aneurysm development, aortic wall apoptosis, and extracellular matrix deficiencies. We identify increased miR-29b expression as key to the pathogenesis of early aneurysm development in MFS by regulating aortic wall apoptosis and extracellular matrix abnormalities.
    Circulation Research 11/2011; 110(2):312-24. DOI:10.1161/CIRCRESAHA.111.253740 · 11.02 Impact Factor