Xiaojie Li

Jilin University, Yung-chi, Jilin Sheng, China

Are you Xiaojie Li?

Claim your profile

Publications (2)2.41 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Quantum nanoparticles have been applied extensively in biological and medical fields, the cytotoxicity of nanoparticles becomes the key point we should concern. In this paper, the cytotoxicity of three kinds of water-soluble nanoparticles: CdTe, CdTe@SiO2 and Mn:ZnSe was studied. We evaluated the nanoparticles toxicity qualitatively by observing the morphological changes of human osteoblast-like MG-63 cells at different incubation times and colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were carried out to detect the cell viability quantitatively. The results showed that CdTe nanoparticles with high concentrations caused cells to die largely while CdTe@SiO2 and Mn:ZnSe nanoparticles had no obvious effect. For further study, we studied the relation between the cell viability and the total cadmium concentration in cells and found that the viability of cells treated with CdTe@SiO2 nanoparticles was higher than that treated with CdTe nanoparticles. We also discovered that the death rate of cells co-incubated with CdTe nanoparticles was proportional to the total intracellular cadmium concentrations.
    Materials Research Bulletin. 11/2012; 47(11):3654–3659.
  • [show abstract] [hide abstract]
    ABSTRACT: Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated the effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed decreased expressions of MMP-2 and MMP-9 at the mRNA and protein levels. Taken together, the present findings suggest that Neu3 is a promising molecular target for the prevention of prostate cancer metastasis.
    Biochemical and Biophysical Research Communications 11/2011; 416(3-4):270-6. · 2.41 Impact Factor

Publication Stats

6 Citations
64 Views
2.41 Total Impact Points

Institutions

  • 2011–2012
    • Jilin University
      • Department of Pathophysiology
      Yung-chi, Jilin Sheng, China